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Data

Graph G = (V,E,W) with

• a set of nodes V = {1, . . . ,N},

• a set of edges E ⊂ V2, particular cases: (un)directed, with(out) loop,...

• additional information on edges, w ∈ W containing weights (number of
interactions, positive or negative interaction,...)

Equivalence of list of edges, adjacency matrices...

Additional attributes for nodes: covariates for any i ∈ V, Xi attributes of a
node (taxon, gender, age, social group,...), or information derived from the
edges: degree of i.
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Convolution on graphs

• particular structure,

• isomorphism of graphs up to relabelling the nodes,

• large graphs but sparse,

• convolution on graph, convolution on images (images can be seen as
graph with fixed number of neighbors)

Convolution with neighbors: x features on nodes:

hi =
∑

j∈N (i)

xj

N (i) is the set of neighbors of node i.
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convolutional layer
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Graph Convolution Networks

[Kipf and Welling, 2016]

h(ℓ+1)
i = σ

(
W(ℓ+1)

∑
j∈N (i)∪{i}

1
ci,j

· h(ℓ)
j

)
Importance of normalization ci,j.

Matrix form
H(l+1) = σ

(
D̃−1/2ÃD̃−1/2H(l)W(l)

)
with

• W(l) a matrix of trainable parameters,

• Ã = A + I,

• D the diagonal matrix of degrees of Ã.
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Importance of normalization

Different choices:

• No normalization Ã
• hl+1

i =
∑

j,j∈N (i) Aijhl
j,

• Eigenvalue of Ã larger than 1 ⇒ exploding largest eigenvalue when stacking
layers,

• row normalization Arow = D−1A,
• hl+1

i =
∑

j,j∈N (i) Aij
hl

j
di

• largest eigenvalue is 1 but not taken into account connectivity of neighbors,

• col normalization Acol = AD−1

• hl+1
i =

∑
j,j∈N (i) Aij

hl
j

dj

• largest eigenvalue is 1 but put too much weight on well connected nodes,

• Naive normalization Anaive = D−1AD−1

• hl+1
i =

∑
j,j∈N (i) Aij

hl
j

djdi

• largest eigenvalue is < 1 and vanishes when stacking layers,

• symmetric normalization Asym = D−1/2AD−1/2

• hl+1
i =

∑
j,j∈N (i) Aij

hl
j√

djdi

• largest eigenvalue is 1, combine row and col normalization.
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Graph Convolutional Network
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Other kinds of GNN

• Graph Convolution Networks as we have seen,

• Graph Attention Networks (GAT) [Casanova et al., 2018],

• hl
i = σ

(∑
j∈N (i) α

l(i, j)Whl−1
j

)
,

• αl(i, j) is the attention function,
• αl(i, j) = softmax

(
σ′(a⊤ · (Whi,Whj)

))
.

• Graph SAGE (SAmple and agGrEgate) [Hamilton et al., 2017],
• hl

N (i) = AGGREGATEk({hl−1
j , j ∈ N (i)}),

• hl
i = σ(W l · CONCAT(hl−1

i , hl
N (i)),

• hl
i = hl

i/∥hl
i∥.

• Graph Isomorphism Network (GIN) [Xu et al., 2018].

see https://distill.pub/2021/understanding-gnns/
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Semi-supervised learning on nodes

Data: G = (V,E) a network with N nodes, m% of nodes with an observed
labels in {1, . . . ,Q}, V set of edges is known, (features on nodes X).

Goal: Classify nodes without labels.

Architecture:

• X can be a vector of the degrees of nodes, a number for each node, or
an identity matrix...

• 2 or 3 GCN layers with given numbers of features,

• Last layer is a linear transformation in a K dimension space : for each p
point from the dataset (hL

p1, . . . , hL
pK).

Loss: Cross entropy:

loss(x, y) =
1

ntrain

ntrain∑
p=1

log

(
exp(hL

p,yp)∑K
k=1 exp(h

L
p,k)

)
.
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Graph classification

Data: G1, . . .Gn and labels on graphs.

Goal: Learn the Classification function f : G 7→ {1, . . . ,K}

Architecture:

and batches

Average over nodes in the same graph in order to have a layer at the graph
level and use a classifier.

Loss: cross entropy.
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Link Prediction

Data: G = (V,E), V is incomplete.
Goal: Find edges that are likely to exist for a given set of non-observed
edges...

Architecture: GCN layers with V as the set of edges... Last layer uses a
“decoder” for dyads:

g(Dist(hl
i, hl

j)) or hl⊤
i hl

j

Loss: Cross entropy computed on a set of trainable DYADS (usually half of
edges and half of non edges).

Remark: Autoencoder directly derived from link prediction task by using hl
i as

the embedding.
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GVAE

Data: G = (V,E).

Goal: Find an embedding of nodes in a small dimension (Euclidean) space
as a conditional distribution.

Architecture: GCN layers to embed the nodes in the parameters of a
Gaussian distribution, simulation under the distribution and a last decoder
layer to predict edges.

(Xi)i → (mi, si)i → (Zi = mi + si · N (0, 1))i → (Z⊤
i Zj)ij

Loss: Cross entropy with a KL on the set of trainable DYADS:

Eq(Z|X,A)
(
log p(Atrain|Z)

)
− KL(q(Z|X,A)||p(Z))

where p(Z) is a prior distribution chosen as N (0, 1).
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Many resources online

• introduction to GNN https://distill.pub/2021/gnn-intro/,

• convolution on graphs
https://distill.pub/2021/understanding-gnns/,

• google colabs for pytorch geometric https://pytorch-geometric.
readthedocs.io/en/latest/get_started/colabs.html.
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Required packages
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Data format

Format:

• 2 × |E| Tensor: edge index.

• |V| × d Tensor: node features.
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Simple convolution
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More convolution

All the convolution are available at https://pytorch-geometric.
readthedocs.io/en/latest/cheatsheet/gnn_cheatsheet.html
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Simple architecture
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Mask
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Mask nodes
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Mask edges
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Pytorch training framework
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Specificity for bipartite network

Format:

• 2 × |E| Tensor: edge index.

• |Vs| × ds Tensor: source node features.

• |Vt| × dt Tensor: target node features.
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Bipartite convolution

Bipartite convolution are directed !
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