
Graph Neural Network: SoTR

Emre Anakok & Pierre Barbillon
15/11/24

1

Outline

Data at hand

Convolution layers for networks

What to do with GCN

2

Outline

Data at hand

Convolution layers for networks

What to do with GCN

3

Data

Graph G = (V,E,W) with

• a set of nodes V = {1, . . . ,N},

• a set of edges E ⊂ V2, particular cases: (un)directed, with(out) loop,...

• additional information on edges, w ∈ W containing weights (number of
interactions, positive or negative interaction,...)

Equivalence of list of edges, adjacency matrices...

Additional attributes for nodes: covariates for any i ∈ V, Xi attributes of a
node (taxon, gender, age, social group,...), or information derived from the
edges: degree of i.

4

Outline

Data at hand

Convolution layers for networks

What to do with GCN

5

Convolution on graphs

• particular structure,

• isomorphism of graphs up to relabelling the nodes,

• large graphs but sparse,

• convolution on graph, convolution on images (images can be seen as
graph with fixed number of neighbors)

Convolution with neighbors: x features on nodes:

hi =
∑

j∈N (i)

xj

N (i) is the set of neighbors of node i.

6

convolutional layer

7

Graph Convolution Networks

[Kipf and Welling, 2016]

h(ℓ+1)
i = σ

(
W(ℓ+1)

∑
j∈N (i)∪{i}

1
ci,j

· h(ℓ)
j

)
Importance of normalization ci,j.

Matrix form
H(l+1) = σ

(
D̃−1/2ÃD̃−1/2H(l)W(l)

)
with

• W(l) a matrix of trainable parameters,

• Ã = A + I,

• D the diagonal matrix of degrees of Ã.

8

Importance of normalization

Different choices:

• No normalization Ã
• hl+1

i =
∑

j,j∈N (i) Aijhl
j,

• Eigenvalue of Ã larger than 1 ⇒ exploding largest eigenvalue when stacking
layers,

• row normalization Arow = D−1A,
• hl+1

i =
∑

j,j∈N (i) Aij
hl

j
di

• largest eigenvalue is 1 but not taken into account connectivity of neighbors,

• col normalization Acol = AD−1

• hl+1
i =

∑
j,j∈N (i) Aij

hl
j

dj

• largest eigenvalue is 1 but put too much weight on well connected nodes,

• Naive normalization Anaive = D−1AD−1

• hl+1
i =

∑
j,j∈N (i) Aij

hl
j

djdi

• largest eigenvalue is < 1 and vanishes when stacking layers,

• symmetric normalization Asym = D−1/2AD−1/2

• hl+1
i =

∑
j,j∈N (i) Aij

hl
j√

djdi

• largest eigenvalue is 1, combine row and col normalization.

9

Graph Convolutional Network

1

3

2

X
1
=(0, 1) X

2
=(-2, 1)

X
3
=(1, 1)

1

3

2

AX
1
=(-1,3) AX

2
=(-2, 2)

AX
3
=(1, 2)

1

3

2

AX
1
W=(7) AX

2
W=(2)

AX
3
W=(8)

Ã =

1 1 1
1 1 0
1 0 1

 ,X =

 0 1
−2 1
1 1

 ,W =

(
2
3

)

10

Other kinds of GNN

• Graph Convolution Networks as we have seen,

• Graph Attention Networks (GAT) [Casanova et al., 2018],

• hl
i = σ

(∑
j∈N (i) α

l(i, j)Whl−1
j

)
,

• αl(i, j) is the attention function,
• αl(i, j) = softmax

(
σ′(a⊤ · (Whi,Whj)

))
.

• Graph SAGE (SAmple and agGrEgate) [Hamilton et al., 2017],
• hl

N (i) = AGGREGATEk({hl−1
j , j ∈ N (i)}),

• hl
i = σ(W l · CONCAT(hl−1

i , hl
N (i)),

• hl
i = hl

i/∥hl
i∥.

• Graph Isomorphism Network (GIN) [Xu et al., 2018].

see https://distill.pub/2021/understanding-gnns/

11

https://distill.pub/2021/understanding-gnns/

Outline

Data at hand

Convolution layers for networks

What to do with GCN

12

Semi-supervised learning on nodes

Data: G = (V,E) a network with N nodes, m% of nodes with an observed
labels in {1, . . . ,Q}, V set of edges is known, (features on nodes X).

Goal: Classify nodes without labels.

Architecture:

• X can be a vector of the degrees of nodes, a number for each node, or
an identity matrix...

• 2 or 3 GCN layers with given numbers of features,

• Last layer is a linear transformation in a K dimension space : for each p
point from the dataset (hL

p1, . . . , hL
pK).

Loss: Cross entropy:

loss(x, y) =
1

ntrain

ntrain∑
p=1

log

(
exp(hL

p,yp)∑K
k=1 exp(h

L
p,k)

)
.

13

Graph classification

Data: G1, . . .Gn and labels on graphs.

Goal: Learn the Classification function f : G 7→ {1, . . . ,K}

Architecture:

and batches

Average over nodes in the same graph in order to have a layer at the graph
level and use a classifier.

Loss: cross entropy.

14

Link Prediction

Data: G = (V,E), V is incomplete.
Goal: Find edges that are likely to exist for a given set of non-observed
edges...

Architecture: GCN layers with V as the set of edges... Last layer uses a
“decoder” for dyads:

g(Dist(hl
i, hl

j)) or hl⊤
i hl

j

Loss: Cross entropy computed on a set of trainable DYADS (usually half of
edges and half of non edges).

Remark: Autoencoder directly derived from link prediction task by using hl
i as

the embedding.

15

GVAE

Data: G = (V,E).

Goal: Find an embedding of nodes in a small dimension (Euclidean) space
as a conditional distribution.

Architecture: GCN layers to embed the nodes in the parameters of a
Gaussian distribution, simulation under the distribution and a last decoder
layer to predict edges.

(Xi)i → (mi, si)i → (Zi = mi + si · N (0, 1))i → (Z⊤
i Zj)ij

Loss: Cross entropy with a KL on the set of trainable DYADS:

Eq(Z|X,A)
(
log p(Atrain|Z)

)
− KL(q(Z|X,A)||p(Z))

where p(Z) is a prior distribution chosen as N (0, 1).

16

Many resources online

• introduction to GNN https://distill.pub/2021/gnn-intro/,

• convolution on graphs
https://distill.pub/2021/understanding-gnns/,

• google colabs for pytorch geometric https://pytorch-geometric.
readthedocs.io/en/latest/get_started/colabs.html.

17

https://distill.pub/2021/gnn-intro/
https://distill.pub/2021/understanding-gnns/
https://pytorch-geometric.readthedocs.io/en/latest/get_started/colabs.html
https://pytorch-geometric.readthedocs.io/en/latest/get_started/colabs.html

Casanova, P., Lio, A. R. P., and Bengio, Y. (2018).
Graph attention networks.
ICLR. Petar Velickovic Guillem Cucurull Arantxa Casanova Adriana
Romero Pietro Liò and Yoshua Bengio.

Hamilton, W., Ying, Z., and Leskovec, J. (2017).
Inductive representation learning on large graphs.
Advances in neural information processing systems, 30.

Kipf, T. N. and Welling, M. (2016).
Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2018).
How powerful are graph neural networks?
arXiv preprint arXiv:1810.00826.

18

Required packages

18

Data format

Format:

• 2 × |E| Tensor: edge index.

• |V| × d Tensor: node features.

19

Simple convolution

20

More convolution

All the convolution are available at https://pytorch-geometric.
readthedocs.io/en/latest/cheatsheet/gnn_cheatsheet.html

21

https://pytorch-geometric.readthedocs.io/en/latest/cheatsheet/gnn_cheatsheet.html
https://pytorch-geometric.readthedocs.io/en/latest/cheatsheet/gnn_cheatsheet.html

Simple architecture

22

Mask

? ?

?

??

?

?

?

Mask nodes

?

? ?

?

Mask edges

23

Pytorch training framework

24

Specificity for bipartite network

Format:

• 2 × |E| Tensor: edge index.

• |Vs| × ds Tensor: source node features.

• |Vt| × dt Tensor: target node features.

25

Bipartite convolution

Bipartite convolution are directed !

26

	Data at hand
	Convolution layers for networks
	What to do with GCN
	References

	anm0:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

