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Clustering in a nutshell



It’s a data’s world...

m
od

el

clustering

al
go

rit
hm

da
ta

mixture

latent

clusters
matrix

an
al

ys
is

di
m

en
si

on

2/24



Clustering

Clustering is the task of grouping objects together into classes or clusters, in an

unsupervised fashion based on some criterion.

Doc 1 “Lésions cancéreuses (. . . ) carcinome canalaire”

Doc 2 “Lésions cancéreuses (. . . ) carcinome lobulaire”

. . . . . .

Doc n “Lésions bénignes (. . . ) métaplasie”

4 5 6 7 2 1 3
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Organization

The framework: dicrete latent variable models

The exact integrated classification likelihood

Greedy maximimization of ICLex: a genetic algorithm

A quick introduction to the greed package
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The framework: dicrete latent

variable models



The rationale of model-based approaches

Observe X related to n objects

Search for zi ∈ {0, 1}K the cluster assignment of object i

Assume Z = {zi} contains independent and identically distributed (i.i.d.) discrete

latent variables

p(Z | π) =
n∏

i=1
MK (zi | 1,π)

Posit a statistical model on X | Z,θ
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Discrete latent variable models (DLVMs)

Conditional independence of the observations given Z :

p(X | Z,θ) =
∏
x∈X

p(x | Z,θ) (DLVMs)

Example 1: Finite Mixture Models (FMM)

Observations X = {x1, . . . ,xn} are i.i.d. inside a cluster

∀i, xi | {zik = 1} ∼ p(· | θk)

• Gaussian mixture model: p(xi | θk) = N p(xi | mk ,Sk)

• Mixture of multinomials: p(xi | θk) = Mp(xi | θk)

p(X | π,θ) =
∏n

i=1 p(xi | π,θ) =
∏n

i=1
∑K

k=1 πkp(xi | θk)
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Discrete latent variable models (DLVMs)

Conditional independence of the observations given Z :

p(X | Z,θ) =
∏
x∈X

p(x | Z,θ) (DLVMs)

Example 2: Stochastic Block Model (SBM)

Observe n2 edges X = {xij}ij , cluster n nodes

∀(i, j), xij | {zikzjl = 1} ∼ p(· | θkl)

Edges are i.i.d. inside a block of clusters, not marginally

• Binary SBM: p(xij | θkl) = B(xij | θkl)

• Poisson SBM: p(xij | θkl) = P(xij | θkl)
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Clustering and model selection in DLVMs

Standard approaches use a two-stage procedure

1. Inference: Fix K
I Estimate π̂, θ̂, e.g. by maximum-likelihood

I Z is estimated by some Ẑ (e.g. MAP estimation)

2. Model selection: choose K? maximizing a given criterion, e.g. AIC, BIC...

Clustering context: Integrated Classification Likelihood (ICL, Biernacki et al. 2000)

log p(X,Z | K) = log

∫
π

∫
θ

p(X,Z,θ,π | K) dθ dπ (1)

À la BIC criterion via a combination of Laplace and Stirling approximations

ICLBIC(K) = log p(X, Ẑ | π̂, θ̂,K)− penalty(K)
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The exact integrated classification

likelihood



Exact integrated classification likelihood

Proposition (Fubini)

With a factorized prior: p(θ,π) = p(θ | β) p(π | α)

ICLex(Z,α,β) = log p(X | Z,β)︸ ︷︷ ︸
(1)

+ log p(Z | α)︸ ︷︷ ︸
(2)

(1) Conjugate prior for exact available in standard DLVMs, e.g.

• MoM or LCA (Biernacki et al. 2010; Tessier et al. 2006)

• Binary SBM (Côme et al. 2015), dc-SBM (come2021hierarchical)

• GMM (Bertoletti et al. 2015), modulo informative prior

(2) Common part to all DLVMs - Exact expression with universal prior

p(π | α) = DK
(
π | α = (α1, . . . , αK )

)
Set αk = α, ∀k — e.g. Uniform (α = 1) or Jeffreys (α = 1/2)
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Overview of (come2021hierarchical)

• Generic approach: applies in the framework of DLVMs

• ICLex criterion as a clustering objective

Twofold contribution:

1. Genetic algorithm: greedy maximization w.r.t Z and K

Z(K?) ∈ argmax
K ,Z

ICLex(Z,K) (2)

• Jointly performs clustering and model selection

• Bypass inference of θ and π

2. Hierarchical algorithm: start from Z(K?) and merge clusters using logα

Z(K?) ≤ . . . ≤ Z(1)

• Produces a dendrogram

• Ordering of the cluster (useful for visualization)
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Greedy maximimization of ICLex: a

genetic algorithm



Greedy local search

Goal: Optimize ICLex directly with respect to Z

Z(K?) ∈ argmax
K ,Z

ICLex(Z,K) (3)

Combinatorial problem: Bn possible partitions (n-th Bell number)

Existing solution: greedy local search (Côme et al. 2015)

1. Starts with an overly segmented Z(K)

2. Swap moves: greedily change clusters until convergence (empty clusters)

3. Merge moves: greedily merge clusters until convergence

Output: locally optimal partition Z(K?) with K? automatically selected
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Improving greedy local search

→ Pros: Fast & competitive w.r.t alternatives e.g. (V)EM

→ Cons: Exploitation is good, but exploration is hard

• Initialization: ICLex is highly-multimodal ! seeding is important

• Existence of sub-optimal local maxima (in term of clustering, i.e. underfitting)

Our proposition: improve exploration with a genetic algorithm (GA)

→ Grow a set of V candidates

→ Recombination, mutation, natural selection

→ Hybrid GA: use greedy local search on each generation.
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Algorithm: Standard genetic algorithm

Input: Population size: V , probability of mutation: pm, maxgen
// Initialization

1. Start with V random partitions

2. Update each partitions with greedy swapping (delete empty clusters)

// Population evolution

for n = 1 to maxgen do

Sample V pairs of candidates (according to ICLex rank)

for each pair (Z1,Z2) do

• Recombination: Z = Cross(Z1,Z2) (cross-over)

• Use greedy local search on Z (merges)

• Apply random splits to Z with proba pm (mutation)

• If a random split occurs use greedy local search on Z (swaps)

end

end
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Crossover operator: cross-partition operator

• Solution space has a particular structure (must handle label switching)

• Integer encoding with single point crossover not well suited for the task

⇒ Work on the space of partitions Z ⇔ P = {C1, ...,CK} a partition of [n].
This space has an interesting operator the cross-partition operator

Cross-partition operator

Let P1 = {C1
1 , ...,C

1
K1

} and P2 = {C2
1 , ...,C

2
K2

} be two partition of [n] the
cross-partition operator × is defined by:

P1 × P2 :=
{
C1

k ∩C2
l , ∀k ∈ {1, ...,K1}, ∀l ∈ {1, ...,K2}

}
\
{
∅
}
.
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Crossover operator: cross-partition operator

• Solution space has a particular structure (must handle label switching)

• Integer encoding with single point crossover not well suited for the task

⇒ Work on the space of partitions Z ⇔ P = {C1, ...,CK} a partition of [n].
This space has an interesting operator the cross-partition operator

Cross-partition operator

Example : P1 =
{
{1, 2, 3}, {4, 5, 6, 7, 8, 9}

}
and P1 =

{
{1, 2, 3, 4, 5, 6}, {7, 8, 9}

}
:

P1 × P2 =
{
{1, 2, 3}, {4, 5, 6}, {7, 8, 9}

}
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Crossover operator: cross-partition operator

• Solution space has a particular structure (must handle label switching)

• Integer encoding with single point crossover not well suited for the task

⇒ Work on the space of partitions Z ⇔ P = {C1, ...,CK} a partition of [n].
This space has an interesting operator the cross-partition operator

Cross-partition operator

Property:

P1 × P2 is the coarsest refinement of P1 and P2 (both parents may be

reconstructed using merge operations).
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Crossover operator: cross-partition operator

• Solution space has a particular structure (must handle label switching)

• Integer encoding with single point crossover not well suited for the task

⇒ Work on the space of partitions Z ⇔ P = {C1, ...,CK} a partition of [n].
This space has an interesting operator the cross-partition operator

Cross-partition operator

The cross-partition operator is well suited to define a crossover operator

• If both parent partitions are under-fitted, crossing them allows the algorithm

to go backward (and in the good direction) in the partition lattice,

considering finer clustering.

• Synergy with greedy merge operations done afterwards to avoid over-fitting
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Cross-partition: an illustration

Hierarchical nested SBM with K = 15 and n = 1500

yij | zikzjl = 1 ∼ B(θ?kl), θ? =

0

5

10

15

0 5 10 15
l

k

θkl

0.001
0.030
0.130

> sbm = rsbm(n, Pi, Theta)

> fit = greed(sbm$x, model=Sbm())
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Cross-partition: an illustration

Solution P1 is a local optimum after greedy swap :

13%

8%

15%

6%

7%

6%

7%

12%

7%

6%

6%

7%

13% 8% 15% 6% 7% 6% 7% 12% 7% 6% 6% 7%

Link density

0.00

0.03

0.06

0.09

SBM model with : 12 clusters.

Pb: under-fitting, local swap optima
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Cross-partition: an illustration

Solution P2 is another local optimum after greedy swap :

6%

7%

7%

7%

7%

7%

7%

6%

7%

6%

14%

7%

13%

6% 7% 7% 7% 7% 7% 7% 6% 7% 6% 14% 7% 13%

Link density

0.00

0.05

0.10

0.15

SBM model with : 15 clusters.

Pb: under-fitting (and over-fitting), local swap optima
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Cross-partition: an illustration

Solution P1 × P2 :

7%

7%

6%

6%

7%

8%

7%

7%

6%

7%

6%

7%

6%

6%

6%

7% 7% 6% 6% 7% 8% 7% 7% 6% 7% 6% 7% 6% 6% 6%

Link density

0.0

0.1

0.2

0.3

0.4

0.5

SBM model with : 24 clusters.

Pb: over-fitting
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Crossover operator: cross-partition operator

Solution P1 × P2 + greedy merge:

7%

7%

6%

6%

7%

8%

7%

7%

7%

7%

6%

7%

7%

6%

6%

7% 7% 6% 6% 7% 8% 7% 7% 7% 7% 6% 7% 7% 6% 6%

Link density

0.00

0.03

0.06

0.09

SBM model with : 15 clusters.

Simulated partition is recovered
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A sketch of the hierarchical algorithm

Goal: hierarchy construction from Z(K?)

I access to “simpler” partitions and highlight relationship between clusters

I useful E.D.A tools: dendogram, cluster ordering,...

Standard agglomerative method: starts from Z(K?)

I At stage k, find the best fusion w.r.t ICLex. Repeat until k = 1

Problem: fusions are not possible in term of ICLex

Solution:

• Use α hyper-parameter as a regularization parameter

• Extract a set of dominating nested partitions

19/24



A sketch of the hierarchical algorithm

Goal: hierarchy construction from Z(K?)

I access to “simpler” partitions and highlight relationship between clusters

I useful E.D.A tools: dendogram, cluster ordering,...

Standard agglomerative method: starts from Z(K?)

I At stage k, find the best fusion w.r.t ICLex. Repeat until k = 1

Problem: fusions are not possible in term of ICLex

Solution:

• Use α hyper-parameter as a regularization parameter

• Extract a set of dominating nested partitions

19/24



A quick introduction to the greed

package



Implementation and API

greed is available on CRAN and it is

• Flexible - can handle categorical, count, continuous, graphs or a combination

• Quick - especially for networks

Main usage via the greed() function

> sol <- greed(X,model)

> cl <- clustering(sol)

Many generic functionalities such as

• Plot > plot(sol, type="tree")

• Explore > sol_K2 <- cut(sol, K=2)

• MAP estimate → θ̂ | Z(K?) > theta <- coef(sol)
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Graph clustering: the book dataset

> sol_sbm = greed(Books$X, model=Sbm())

> plot(sol_sbm, type)

11%

28%

19%

34%
8%

11% 28% 19% 34%8%

Link density
0.0
0.2
0.4
0.6

SBM model with : 5 clusters.

type="blocks"

0

50

100

150

−
lo

g(
α)

SBM 5 clusters, dendogram

type="tree"
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Continuous data: diabetes data

> sol_gmm = greed(X, model=Gmm())

1 2 3

Chemical 11 24 1

Normal 73 3 0

Overt 0 6 27

glucose

0 2 4

insulin

−2 0 2

sspg

−2 0 2 4

Clusters: 1 2 3

Gmm clustering with 3 clusters.

gmmpairs(sol_gmm, X)

0

50

100

150

−
lo

g(
α)

GMM 3 clusters, dendogram

plot(sol_gmm, "tree")
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Heterogeneous data: the fifa dataset

> X = list(cat=Xcat, num=Xnum)

> mods <-list(cat=LcaPrior(), num=GmmPrior())

> sol_cb = greed(X, model=CombinedModels(mods))

> submod = extractSubModel(sol, name)

> plot(submod, type="marginals")

Left Right

preferred_foot

FALSE TRUE

RW

FALSE TRUE

CF

FALSE TRUE

ST

FALSE TRUE

LW

FALSE TRUE

CAM

FALSE TRUE

CM

FALSE TRUE

CB

FALSE TRUE

CDM

FALSE TRUE

LM

FALSE TRUE

LB

FALSE TRUE

RB

FALSE TRUE

RM

FALSE TRUE

LWB

FALSE TRUE

RWB

name="cat"

10 20 30 40

age

30 60 90 120

pace

40 60 80

dribbling

160 170 180 190 200 210

height_cm

0 25 50 75 100

shooting

0 25 50 75 100

defending

50 60 70 80 90 100

weight_kg

40 60 80

passing

40 60 80 100

physic

Clusters: 1 2 3 4 5 6 7

name="num"
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Conclusion



Model-based approach for clustering and hierarchical clustering

Pros

• Applies to a wide range of data, e.g. counts, categorical or graphs

• Handles heterogeneous data

• Efficient algorithms relying on greedy heuristics (bypass inference)

• Uses random initializations

• Article also covers the co-clustering case with Latent Block Models

Cons

• Cannot fix the desired number of clusters K?.

• Needs an exact ICL

If you are interested:

I Journal article available here (published in ADAC)

I Implementation details and package description here (submitted to JSS)
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https://hal.archives-ouvertes.fr/hal-02530705
https://arxiv.org/pdf/2204.14063.pdf


Thank you for your attention !



Questions ?
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Appendix



Combined models



Combined models

Context

• V views of the data (e.g. Multiplex networks, heterogeneous data)

• X = {Xv}v=1,...,V — Xv is the v-th views of the data

Stack observational models {Mv} with conditional independence assumption

p(X1, . . . ,XV | Z) = p(X1 | M1,Z)× . . .× p(XV | MV ,Z).

ICLex of the whole dataset is simply the sum of the submodels ICLex



Experimental results: medium-scale SBM

Hierarchical nested SBM with K = 15 and n = 1500

yij | zikzjl = 1 ∼ B(θ?kl), θ? =

0

5

10

15

0 5 10 15
l

k

θkl

0.001
0.030
0.130

> sbm = rsbm(n,Pi,Theta)

> fit = greed(sbm$x,model=new("sbm"),alg=new("hybrid",pop_size=40))

Compare with (implemented in the package)

I Spectral clustering (Qin et al. 2013)

I Greedy local search: unique / multiple / spectral initializations
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Hierarchical model-based clustering

in DLVMs



A novel approximation for the ICLex

ICLex(Z, α) = D(Z) + log p(Z | α), log p(Z | α) = log
Γ(Kα)

∏
k Γ(α+ nk)

Γ(α)KΓ(n + αK)

Our proposition: asymptotic of log Γ near 0

log Γ(α) ∼
α→0

− log(α)

Log-linear ICL

ICLlin(Z
(k), α) ..= (k − 1) log(α) + I (Z(k))

I (Z(k)) = D(Z(k)) +
∑k

l=1 log Γ(nl)− log Γ(n)− log(k)



ICLlin as lines of increasing slope with K
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A discrete Pareto frontier
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Fusion opportunity at stage (k)

Fixed partition Z(k) with k clusters

Two clusters (g, h): ICLlin change for g ∪ h ?

∆g∪h(α) = ICLlin

(
Z

(k)
g∪h, α

)
− ICLlin

(
Z(k), α

)
Proposition

∀g 6= h, ∆g∪h(α) > 0 ⇐⇒ log(α) < I (Z(k)
g∪h)− I (Z(k))

Regularization parameter: α unlocks fusions

Question: k(k − 1)/2 fusions, which one is the best ?

(g?, h?) = argmax
g,h

I (Z(k)
g∪h)



Hierarchy construction and dendrogram representation

Repeat procedure at each stage Z(k)

logα(k) ..= I (Z(k)
g?∪h?)− I (Z(k))

Outputs a hierarchy of partitions

Dendrogram representation:

• α(k) is the amount of regularization needed for the fusion

• Extract a front of dominating partitions on range [α(k−1), α(k)]
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