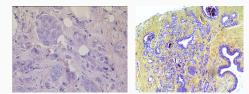
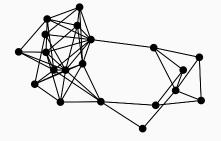
greed: model-based hierarchical clustering with the exact ICL

Based on an ADAC article by **E. Côme**, **N. Jouvin**, **P. Latouche**, **C. Bouveyron** Happy R - Friday 24, 2022

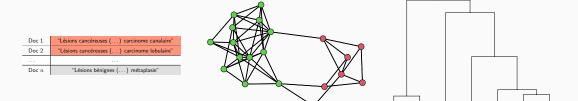
Clustering in a nutshell

It's a data's world...





Clustering is the task of grouping objects together into classes or *clusters*, in an unsupervised fashion based on some criterion.



The framework: dicrete latent variable models

The exact integrated classification likelihood

Greedy maximimization of ICLex: a genetic algorithm

A quick introduction to the greed package

The framework: dicrete latent variable models

Observe \boldsymbol{X} related to n objects

Search for $\boldsymbol{z}_i \in \{0,1\}^K$ the cluster assignment of object i

Assume $Z = \{z_i\}$ contains independent and identically distributed (*i.i.d.*) discrete latent variables

$$p(\boldsymbol{Z} \mid \boldsymbol{\pi}) = \prod_{i=1}^{n} \mathcal{M}_{K}(\boldsymbol{z}_{i} \mid 1, \boldsymbol{\pi})$$

Posit a statistical model on $X \mid Z, \theta$

Conditional independence of the observations given Z:

$$p(\boldsymbol{X} \mid \boldsymbol{Z}, \boldsymbol{\theta}) = \prod_{\boldsymbol{x} \in \boldsymbol{X}} p(\boldsymbol{x} \mid \boldsymbol{Z}, \boldsymbol{\theta})$$
(DLVMs)

Example 1: Finite Mixture Models (FMM)

Observations $\boldsymbol{X} = \{ \boldsymbol{x}_1, \dots, \boldsymbol{x}_n \}$ are *i.i.d.* inside a cluster

$$\forall i, \quad \boldsymbol{x}_i \mid \{\boldsymbol{z}_{ik} = 1\} \sim p(\cdot \mid \boldsymbol{\theta}_k)$$

- Gaussian mixture model: $p(\boldsymbol{x}_i \mid \boldsymbol{\theta}_k) = \mathcal{N}_p(\boldsymbol{x}_i \mid \boldsymbol{m}_k, \boldsymbol{S}_k)$
- Mixture of multinomials: $p(\boldsymbol{x}_i \mid \boldsymbol{\theta}_k) = \mathcal{M}_p(\boldsymbol{x}_i \mid \boldsymbol{\theta}_k)$

$$p(\boldsymbol{X} \mid \boldsymbol{\pi}, \boldsymbol{\theta}) = \prod_{i=1}^{n} p(\boldsymbol{x}_i \mid \boldsymbol{\pi}, \boldsymbol{\theta}) = \prod_{i=1}^{n} \sum_{k=1}^{K} \pi_k p(\boldsymbol{x}_i \mid \boldsymbol{\theta}_k)$$

Discrete latent variable models (DLVMs)

Conditional independence of the observations given Z:

$$p(\boldsymbol{X} \mid \boldsymbol{Z}, \boldsymbol{\theta}) = \prod_{\boldsymbol{x} \in \boldsymbol{X}} p(\boldsymbol{x} \mid \boldsymbol{Z}, \boldsymbol{\theta})$$
(DLVMs)

Example 2: Stochastic Block Model (SBM)

Observe n^2 edges $\boldsymbol{X} = \{x_{ij}\}_{ij}$, cluster n nodes

 $\forall (i,j), \quad x_{ij} \mid \{ z_{ik} z_{jl} = 1 \} \sim p(\cdot \mid \boldsymbol{\theta}_{kl})$

Edges are *i.i.d.* inside a *block* of clusters, **not marginally**

- Binary SBM: $p(x_{ij} | \boldsymbol{\theta}_{kl}) = \mathcal{B}(x_{ij} | \boldsymbol{\theta}_{kl})$
- Poisson SBM: $p(x_{ij} \mid \boldsymbol{\theta_{kl}}) = \mathcal{P}(x_{ij} \mid \boldsymbol{\theta_{kl}})$

Standard approaches use a two-stage procedure

- 1. Inference: Fix K
 - Estimate $\hat{\pi}, \hat{\theta}$, e.g. by maximum-likelihood
 - \blacktriangleright Z is estimated by some \hat{Z} (e.g. MAP estimation)
- 2. Model selection: choose K^* maximizing a given criterion, *e.g.* AIC, BIC...

Standard approaches use a two-stage procedure

- 1. Inference: Fix K
 - Estimate $\hat{\pi}, \hat{\theta}$, e.g. by maximum-likelihood
 - \blacktriangleright Z is estimated by some \hat{Z} (e.g. MAP estimation)
- 2. Model selection: choose K^* maximizing a given criterion, *e.g.* AIC, BIC...

Clustering context: Integrated Classification Likelihood (ICL, Biernacki et al. 2000)

$$\log p(\boldsymbol{X}, \boldsymbol{Z} \mid K) = \log \int_{\boldsymbol{\pi}} \int_{\boldsymbol{\theta}} p(\boldsymbol{X}, \boldsymbol{Z}, \boldsymbol{\theta}, \boldsymbol{\pi} \mid K) \,\mathrm{d}\boldsymbol{\theta} \,\mathrm{d}\boldsymbol{\pi}$$
(1)

À la BIC criterion via a combination of Laplace and Stirling approximations

$$\mathrm{ICL}_{\mathit{BIC}}(K) = \log p(\boldsymbol{X}, \hat{\boldsymbol{Z}} \mid \hat{\boldsymbol{\pi}}, \hat{\boldsymbol{\theta}}, K) - \mathrm{penalty}(K)$$

The exact integrated classification likelihood

Exact integrated classification likelihood

Proposition (Fubini)

With a factorized prior: $p(\theta, \pi) = p(\theta \mid \beta) p(\pi \mid \alpha)$

$$\operatorname{ICL}_{e_{X}}(\boldsymbol{Z}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \underbrace{\log p(\boldsymbol{X} \mid \boldsymbol{Z}, \boldsymbol{\beta})}_{(1)} + \underbrace{\log p(\boldsymbol{Z} \mid \boldsymbol{\alpha})}_{(2)}$$

(1) Conjugate prior for exact available in standard DLVMs, e.g.

- MoM or LCA (Biernacki et al. 2010; Tessier et al. 2006)
- Binary SBM (Côme et al. 2015), dc-SBM (come2021hierarchical)
- GMM (Bertoletti et al. 2015), modulo informative prior

Exact integrated classification likelihood

Proposition (Fubini)

With a factorized prior: $p(\theta, \pi) = p(\theta \mid \beta) p(\pi \mid \alpha)$

$$\operatorname{ICL}_{e_{X}}(\boldsymbol{Z}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \underbrace{\log p(\boldsymbol{X} \mid \boldsymbol{Z}, \boldsymbol{\beta})}_{(1)} + \underbrace{\log p(\boldsymbol{Z} \mid \boldsymbol{\alpha})}_{(2)}$$

(1) Conjugate prior for exact available in standard DLVMs, e.g.

- MoM or LCA (Biernacki et al. 2010; Tessier et al. 2006)
- Binary SBM (Côme et al. 2015), dc-SBM (come2021hierarchical)
- GMM (Bertoletti et al. 2015), modulo informative prior

(2) Common part to all DLVMs - Exact expression with universal prior

$$p(\boldsymbol{\pi} \mid \boldsymbol{\alpha}) = \mathcal{D}_K \left(\boldsymbol{\pi} \mid \boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_K) \right)$$

Set $\alpha_k = \alpha, \forall k$ — e.g. Uniform ($\alpha = 1$) or Jeffreys ($\alpha = 1/2$)

Overview of (come2021hierarchical)

- Generic approach: applies in the framework of DLVMs
- $\cdot \, \operatorname{ICL}_{ex}$ criterion as a clustering objective

Twofold contribution:

1. Genetic algorithm: greedy maximization w.r.t $oldsymbol{Z}$ and K

$$\boldsymbol{Z}^{(K^{\star})} \in \operatorname*{arg\,max}_{K,\boldsymbol{Z}} \operatorname{ICL}_{ex}(\boldsymbol{Z}, K)$$
(2)

- $\cdot\,$ Jointly performs clustering and model selection
- \cdot Bypass inference of heta and π

2. Hierarchical algorithm: start from $Z^{(K^{\star})}$ and merge clusters using $\log lpha$

$$Z^{(K^{\star})} \leq \ldots \leq Z^{(1)}$$

Produces a dendrogram

• Ordering of the cluster (useful for visualization)

Overview of (come2021hierarchical)

- $\cdot\,$ Generic approach: applies in the framework of DLVMs
- $\cdot \, \operatorname{ICL}_{ex}$ criterion as a clustering objective

Twofold contribution:

1. Genetic algorithm: greedy maximization w.r.t $oldsymbol{Z}$ and $oldsymbol{K}$

$$Z^{(K^*)} \in \underset{K,Z}{\operatorname{arg\,max\,ICL}} (Z, K)$$
(2)

- Jointly performs clustering and model selection
- · Bypass inference of heta and π

2. Hierarchical algorithm: start from $Z^{(K^{\star})}$ and merge clusters using $\log \alpha$

$$\boldsymbol{Z}^{(K^{\star})} \leq \ldots \leq \boldsymbol{Z}^{(1)}$$

- Produces a dendrogram
- Ordering of the cluster (useful for visualization)

Greedy maximimization of ICLex: a genetic algorithm

Goal: Optimize ICL_{ex} directly with respect to Z

$$\mathbf{Z}^{(K^{\star})} \in \underset{K,\mathbf{Z}}{\operatorname{arg\,max\,ICL}_{ex}}(\mathbf{Z},K)$$
(3)

Combinatorial problem: B_n possible partitions (*n*-th Bell number)

Goal: Optimize ICL_{ex} directly with respect to $oldsymbol{Z}$

$$\mathbf{Z}^{(K^{\star})} \in \underset{K,\mathbf{Z}}{\operatorname{arg\,max\,ICL}_{e_{\mathbf{X}}}}(\mathbf{Z},K)$$
(3)

Combinatorial problem: B_n possible partitions (*n*-th Bell number)

Existing solution: greedy local search (Côme et al. 2015)

- 1. Starts with an overly segmented $oldsymbol{Z}^{(K)}$
- 2. Swap moves: greedily change clusters until convergence (empty clusters)
- 3. Merge moves: greedily merge clusters until convergence

Output: locally optimal partition $Z^{(K^*)}$ with K^* automatically selected

Improving greedy local search

 \rightarrow **Pros**: Fast & competitive w.r.t alternatives *e.g.* (V)EM

- $\rightarrow~\mbox{Cons:}$ Exploitation is good, but $\mbox{exploration}$ is hard
 - Initialization: ICL_{ex} is highly-multimodal ! seeding is important
 - Existence of sub-optimal local maxima (in term of clustering, i.e. underfitting)

Our proposition: improve exploration with a genetic algorithm (GA)

- \rightarrow Grow a set of V candidates
- \rightarrow Recombination, mutation, natural selection
- \rightarrow Hybrid GA: use greedy local search on each generation.

Algorithm: Standard genetic algorithm

Input: Population size: V, probability of mutation: pm, maxgen

// Initialization

1. Start with V random partitions

// Population evolution

for n = 1 to maxgen do

Sample V pairs of candidates (according to ICL_{ex} rank) for each pair (Z^1, Z^2) do

- Recombination: $\boldsymbol{Z} = \text{Cross}(\boldsymbol{Z}^1, \boldsymbol{Z}^2)$ (cross-over)
- Apply random splits to \boldsymbol{Z} with proba pm (mutation)

end end

Algorithm: Hybrid genetic algorithm

Input: Population size: V, probability of mutation: pm, maxgen

// Initialization

- 1. Start with V random partitions
- 2. Update each partitions with greedy swapping (delete empty clusters)

// Population evolution

for n = 1 to maxgen do

Sample V pairs of candidates (according to ICL_{ex} rank) for each pair (Z^1, Z^2) do

- Recombination: $\mathbf{Z} = \text{Cross}(\mathbf{Z}^1, \mathbf{Z}^2)$ (cross-over)
- \cdot Use greedy local search on Z (merges)
- \cdot Apply random splits to $oldsymbol{Z}$ with proba pm (mutation)
- \cdot If a random split occurs use greedy local search on Z (swaps)

end

end

- Solution space has a particular structure (must handle label switching)
- Integer encoding with single point crossover not well suited for the task

 \Rightarrow Work on the space of partitions $Z \Leftrightarrow \mathcal{P} = \{C_1, ..., C_K\}$ a partition of [n]. This space has an interesting operator the cross-partition operator

Cross-partition operator

Let $\mathcal{P}^1 = \{C_1^1, ..., C_{K_1}^1\}$ and $\mathcal{P}^2 = \{C_1^2, ..., C_{K_2}^2\}$ be two partition of [n] the cross-partition operator \times is defined by:

$$\mathcal{P}^1 imes \mathcal{P}^2 := \left\{ oldsymbol{C}_k^1 \cap oldsymbol{C}_l^2 \,,\, orall k \in \{1,...,K_1\}, orall l \in \{1,...,K_2\}
ight\} \setminus \left\{ \emptyset
ight\}.$$

- Solution space has a particular structure (must handle label switching)
- Integer encoding with single point crossover not well suited for the task

 \Rightarrow Work on the space of partitions $Z \Leftrightarrow \mathcal{P} = \{C_1, ..., C_K\}$ a partition of [n]. This space has an interesting operator the cross-partition operator

Cross-partition operator

Example :
$$\mathcal{P}^1 = \{\{1, 2, 3\}, \{4, 5, 6, 7, 8, 9\}\}$$
 and $\mathcal{P}^1 = \{\{1, 2, 3, 4, 5, 6\}, \{7, 8, 9\}\}$:

 $\mathcal{P}^1 \times \mathcal{P}^2 = \left\{ \{1, 2, 3\}, \{4, 5, 6\}, \{7, 8, 9\} \right\}$

- Solution space has a particular structure (must handle label switching)
- Integer encoding with single point crossover not well suited for the task

 \Rightarrow Work on the space of partitions $Z \Leftrightarrow \mathcal{P} = \{C_1, ..., C_K\}$ a partition of [n]. This space has an interesting operator the cross-partition operator

Cross-partition operator

Property:

 $\mathcal{P}^1 \times \mathcal{P}^2$ is the coarsest refinement of \mathcal{P}^1 and \mathcal{P}^2 (both parents may be reconstructed using merge operations).

- Solution space has a particular structure (must handle label switching)
- Integer encoding with single point crossover not well suited for the task

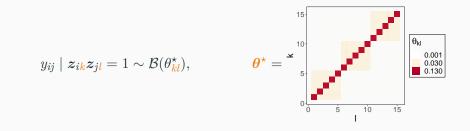
 \Rightarrow Work on the space of partitions $Z \Leftrightarrow \mathcal{P} = \{C_1, ..., C_K\}$ a partition of [n]. This space has an interesting operator the cross-partition operator

Cross-partition operator

The cross-partition operator is well suited to define a crossover operator

- If both parent partitions are **under-fitted**, crossing them allows the algorithm to go backward (and in the good direction) in the partition lattice, considering finer clustering.
- Synergy with greedy merge operations done afterwards to avoid over-fitting

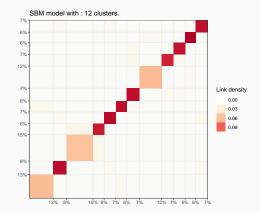
Hierarchical nested SBM with K = 15 and n = 1500



> sbm = rsbm(n, Pi, Theta)
> fit = greed(sbm\$x, model=Sbm())

Cross-partition: an illustration

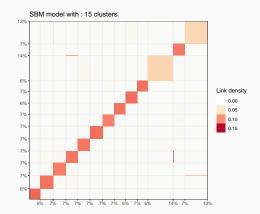
Solution \mathcal{P}^1 is a local optimum after greedy swap :



Pb: under-fitting, local swap optima

Cross-partition: an illustration

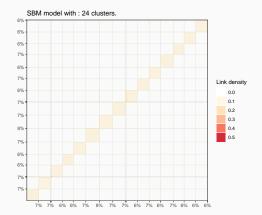
Solution \mathcal{P}^2 is another local optimum after greedy swap :



Pb: under-fitting (and over-fitting), local swap optima

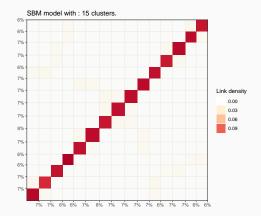
Cross-partition: an illustration

Solution $\mathcal{P}^1 \times \mathcal{P}^2$:



Pb: over-fitting

Solution $\mathcal{P}^1 \times \mathcal{P}^2$ + greedy merge:



Simulated partition is recovered

Goal: hierarchy construction from $Z^{(K^*)}$

- ► access to "simpler" partitions and highlight relationship between clusters
- ▶ useful E.D.A tools: dendogram, cluster ordering,...

Standard agglomerative method: starts from $oldsymbol{Z}^{(K^{\star})}$

▶ At stage k, find the best fusion w.r.t ICL_{ex}. Repeat until k = 1

Goal: hierarchy construction from $Z^{(K^*)}$

- ► access to "simpler" partitions and highlight relationship between clusters
- ▶ useful E.D.A tools: dendogram, cluster ordering,...

Standard agglomerative method: starts from $oldsymbol{Z}^{(K^{\star})}$

▶ At stage k, find the best fusion w.r.t ICL_{ex}. Repeat until k = 1

Problem: fusions are not possible in term of ICL_{ex}

Solution:

- · Use α hyper-parameter as a regularization parameter
- Extract a set of dominating *nested* partitions

A quick introduction to the *greed* package

Implementation and API

greed is available on CRAN and it is

- Flexible can handle categorical, count, continuous, graphs or a combination
- Quick especially for networks

Implementation and API

greed is available on CRAN and it is

- Flexible can handle categorical, count, continuous, graphs or a combination
- Quick especially for networks

Main usage via the greed() function

> sol <- greed(X,model)
> cl <- clustering(sol)</pre>

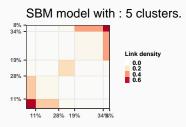
Many generic functionalities such as

- Plot
- Explore
- MAP estimate $ightarrow \hat{m{ heta}} \mid m{Z}^{(K^{\star})}$ > theta <- coef(sol)

> plot(sol, type="tree")
> sol_K2 <- cut(sol, K=2)
> theta <- coef(sol)</pre>

Graph clustering: the book dataset

> sol_sbm = greed(Books\$X, model=Sbm())
> plot(sol_sbm, type)



SBM 5 clusters, dendogram

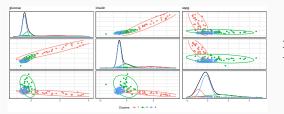
type="blocks"

type="tree"

Continuous data: diabetes data

	1	2	3
Chemical	11	24	1
Normal	73	3	0
Overt	0	6	27

Gmm clustering with 3 clusters.



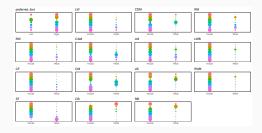
gmmpairs(sol_gmm, X)

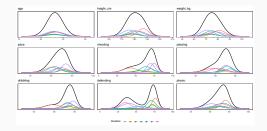
GMM 3 clusters, dendogram

plot(sol_gmm, "tree")

Heterogeneous data: the fifa dataset

- > X = list(cat=Xcat, num=Xnum)
- > mods <-list(cat=LcaPrior(), num=GmmPrior())</pre>
- > sol_cb = greed(X, model=CombinedModels(mods))
- > submod = extractSubModel(sol, name)
- > plot(submod, type="marginals")





name="num"

name="cat"

Conclusion

Pros

- Applies to a wide range of data, *e.g.* counts, categorical or graphs
- Handles heterogeneous data
- Efficient algorithms relying on greedy heuristics (bypass inference)
- Uses random initializations
- Article also covers the co-clustering case with Latent Block Models

Cons

- Cannot fix the desired number of clusters K^{\star} .
- $\cdot\,$ Needs an exact ICL

If you are interested:

- ► Journal article available here (published in ADAC)
- Implementation details and package description here (submitted to JSS)

Thank you for your attention !

Questions ?

References

- Bertoletti, Marco, Nial Friel, and Riccardo Rastelli (Aug. 2015). "Choosing the number of clusters in a finite mixture model using an exact integrated completed likelihood criterion". In: *METRON* 73.2, pp. 177–199.
- Biernacki, Christophe, Gilles Celeux, and Gérard Govaert (2000). "Assessing a mixture model for clustering with the integrated completed likelihood". In: *IEEE transactions on pattern analysis and machine intelligence* 22.7, pp. 719–725.
- Biernacki, Christophe, Gilles Celeux, and Gerard Govaert (2010). "Exact and monte carlo calculations of integrated likelihoods for the latent class model".
 In: Journal of Statistical Planning and Inference 140, pp. 2991–3002.
- Côme, Etienne and Pierre Latouche (2015). "Model selection and clustering in stochastic block models based on the exact integrated complete data likelihood". In: *Statistical Modelling* 15.6, pp. 564–589.

- Qin, Tai and Karl Rohe (2013). "Regularized Spectral Clustering under the Degree-Corrected Stochastic Blockmodel". In: *Proceedings of Nips*.
- Tessier, Damien et al. (2006). "Evolutionary latent class clustering of qualitative data". In.

Appendix

Combined models

Context

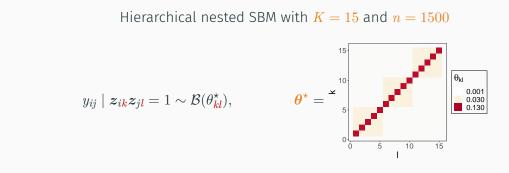
- V views of the data (e.g. Multiplex networks, heterogeneous data)
- $m{\cdot}$ $m{X} = \{m{X}_v\}_{v=1,...,V}$ X_v is the v-th views of the data

Stack observational models $\{\mathcal{M}_v\}$ with conditional independence assumption

$$p(\boldsymbol{X}_1,\ldots,\boldsymbol{X}_V \mid \boldsymbol{Z}) = p(\boldsymbol{X}_1 \mid \mathcal{M}_1, \boldsymbol{Z}) \times \ldots \times p(\boldsymbol{X}_V \mid \mathcal{M}_V, \boldsymbol{Z}).$$

 ICL_{ex} of the whole dataset is simply the sum of the submodels ICL_{ex}

Experimental results: medium-scale SBM

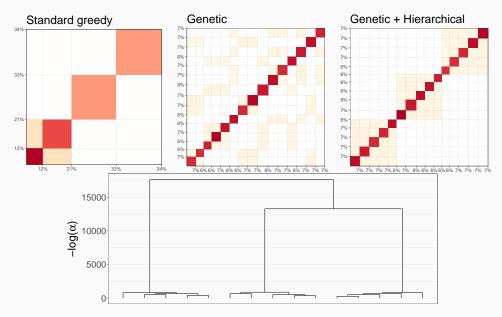


- > sbm = rsbm(n,Pi,Theta)
- > fit = greed(sbm\$x,model=new("sbm"),alg=new("hybrid",pop_size=40

Compare with (implemented in the package)

- ▶ Spectral clustering (Qin et al. 2013)
- ▶ Greedy local search: unique / multiple / spectral initializations

Link density 0.00 0.02 0.04 0.06



Hierarchical model-based clustering in DLVMs

$$\operatorname{ICL}_{e_X}(\boldsymbol{Z}, \boldsymbol{\alpha}) = D(\boldsymbol{Z}) + \log p(\boldsymbol{Z} \mid \boldsymbol{\alpha}), \quad \log p(\boldsymbol{Z} \mid \boldsymbol{\alpha}) = \log \frac{\Gamma(K\boldsymbol{\alpha}) \prod_k \Gamma(\boldsymbol{\alpha} + n_k)}{\Gamma(\boldsymbol{\alpha})^K \Gamma(n + \boldsymbol{\alpha}K)}$$

Our proposition: asymptotic of $\log \Gamma$ near 0

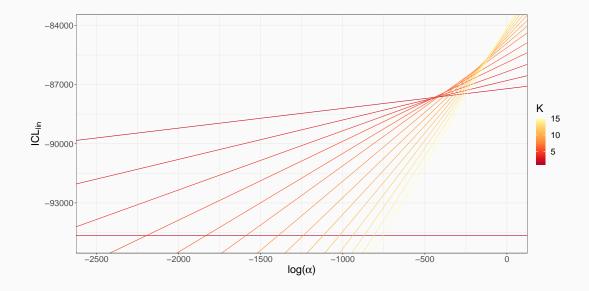
$$\log \Gamma(\alpha) \underset{\alpha \to 0}{\sim} - \log(\alpha)$$

Log-linear ICL

$$\operatorname{ICL}_{lin}(\boldsymbol{Z}^{(k)}, \boldsymbol{\alpha}) := (k-1)\log(\boldsymbol{\alpha}) + I(\boldsymbol{Z}^{(k)})$$

$$I(\mathbf{Z}^{(k)}) = D(\mathbf{Z}^{(k)}) + \sum_{l=1}^{k} \log \Gamma(n_l) - \log \Gamma(n) - \log(k)$$

ICL_{lin} as lines of increasing slope with K



A discrete Pareto frontier



Fusion opportunity at stage (k)

Fixed partition $Z^{(k)}$ with k clusters

Two clusters (g, h): ICL_{lin} change for $g \cup h$?

$$\Delta_{g \cup h}(\boldsymbol{\alpha}) = \mathrm{ICL}_{lin}\left(\boldsymbol{Z}_{g \cup h}^{(k)}, \boldsymbol{\alpha}\right) - \mathrm{ICL}_{lin}\left(\boldsymbol{Z}^{(k)}, \boldsymbol{\alpha}\right)$$

Proposition

$$\forall g \neq h, \ \Delta_{g \cup h}(\boldsymbol{\alpha}) > 0 \iff \log(\boldsymbol{\alpha}) < I(\boldsymbol{Z}_{q \cup h}^{(k)}) - I(\boldsymbol{Z}^{(k)})$$

Regularization parameter: α unlocks fusions

Question: k(k-1)/2 fusions, which one is the best ?

$$(g^{\star}, h^{\star}) = \operatorname*{arg\,max}_{g,h} I(\mathbf{Z}_{g\cup h}^{(k)})$$

Repeat procedure at each stage $oldsymbol{Z}^{(k)}$

$$\log \alpha^{(k)} \coloneqq I(\boldsymbol{Z}_{g^{\star} \cup h^{\star}}^{(k)}) - I(\boldsymbol{Z}^{(k)})$$

Outputs a hierarchy of partitions

Dendrogram representation:

- + $\alpha^{(k)}$ is the amount of regularization needed for the fusion
- Extract a front of dominating partitions on range $[\alpha^{(k-1)}, \alpha^{(k)}]$