greed: model-based hierarchical clustering with the exact ICL

Based on an ADAC article by E. Cobme, N. Jouvin, P. Latouche, C. Bouveyron
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Clustering in a nutshell



It's a data’s world...

n

tering

ent

dimension O

algorithmg

3

lat
8 g
I

analys

matrlx

clusters
IXture

-model

2/24



Clustering is the task of grouping objects together into classes or clusters, in an

unsupervised fashion based on some criterion.

Doc 1

“Lésions cancéreuses (... ) carcinome canalaire”

Doc 2

“Lésions cancéreuses (...) carcinome lobulaire”

“Lésions bénignes (... ) métaplasie”
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The framework: dicrete latent variable models

The exact integrated classification likelihood
Greedy maximimization of ICLex: a genetic algorithm

A quick introduction to the greed package
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The framework: dicrete latent
variable models




The rationale of model-based approaches

Observe X related to n objects
Search for z; € {0,1}¥ the cluster assignment of object i

Assume Z = {z;} contains independent and identically distributed (i.i.d.) discrete
latent variables

p(Z | m) = [ Mx(zi | 1,7)

i=1
Posit a statistical modelon X | Z, 6
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Discrete latent variable models (DLVMs)

Conditional independence of the observations given Z:

p(X|[2,6)=]] p=|2,6) (DLVMs)
reX

Example 1: Finite Mixture Models (FMM)
Observations X = {x;,...,x,} are i.i.d. inside a cluster

Vi, ;| {z =1} ~ p(- | Ox)
- Gaussian mixture model: p(x; | 0;) = Np(x; | my, Sk)

- Mixture of multinomials: p(z; | 6;) = Mp(x; | O)

p(X | 7,0) =TTy plai | w,0) =TTy Xy mep(wi | 6k)
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Discrete latent variable models (DLVMs)

Conditional independence of the observations given Z:

p(X|[2,6)= ][] p=|2,6) (DLVMs)
reX

Example 2: Stochastic Block Model (SBM)
Observe n? edges X = {z;}4, cluster n nodes

V(i,7), 5| {zawz = 1} ~ p(- | On)
Edges are i.i.d. inside a block of clusters, not marginally

. Binary SBM: p(l“ij | akl) = B(I‘U | le)
- Poisson SBM: p(xij | Okl) = ’P<$ZJ ‘ Hkl)
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Clustering and model selection in DLVMs

Standard approaches use a two-stage procedure

1. Inference: Fix K

» Estimate 7,6, e.g. by maximum-likelihood
» Z is estimated by some Z (e.g. MAP estimation)

2. Model selection: choose K* maximizing a given criterion, e.g. AlC, BIC...
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Clustering and model selection in DLVMs

Standard approaches use a two-stage procedure

1. Inference: Fix K

» Estimate 7,6, e.g. by maximum-likelihood
» Z is estimated by some Z (e.g. MAP estimation)

2. Model selection: choose K* maximizing a given criterion, e.g. AlC, BIC...

Clustering context: Integrated Classification Likelihood (ICL, Biernacki et al. 2000)

logp(X,Z\K):log//p(X,Z,O,Tr]K)dOdTr (1)
wJO
A la BIC criterion via a combination of Laplace and Stirling approximations

ICLBIC(K) = Ing(X, Z | ﬁaéa K) - penalty(K)
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The exact integrated classification
likelihood



Exact integrated classification likelihood

Proposition (Fubini)
With a factorized prior: p(8,w) = p(@ | B)

ICL@X(Z7 aﬁ) - IOQP(X ‘ Z*ﬁ) +
—_—
Q)

(1) Conjugate prior for exact available in standard DLVMs, e.g.
- MoM or LCA (Biernacki et al. 2010; Tessier et al. 2006)
- Binary SBM (Come et al. 2015), dc-SBM (come2021hierarchical)
- GMM (Bertoletti et al. 2015), modulo informative prior
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Exact integrated classification likelihood

Proposition (Fubini)
With a factorized prior: p(8,w) = p(@ | B)

ICL@X(Z7 aﬁ) = logp(X ‘ Z*ﬁ) +
—_—
)

(1) Conjugate prior for exact available in standard DLVMs, e.g.
- MoM or LCA (Biernacki et al. 2010; Tessier et al. 2006)
- Binary SBM (Come et al. 2015), dc-SBM (come2021hierarchical)
- GMM (Bertoletti et al. 2015), modulo informative prior

Common part to all DLVMs - Exact expression with universal prior
:,Z)I((Tr ‘ o = (ala"'vaK))
Setay =a,Vk — eg. Uniform (o = 1) or Jeffreys (o = 1/2)
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Overview of (come2021hierarchical)

- Generic approach: applies in the framework of DLVMs
- ICLgy criterion as a clustering objective

Twofold contribution:
1. Genetic algorithm: greedy maximization w.rt Z and K

ZE) ¢ argmaxICLey(Z, K) (2)
K

)

- Jointly performs clustering and model selection
- Bypass inference of @ and =
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Overview of (come2021hierarchical)

- Generic approach: applies in the framework of DLVMs
- ICLgy criterion as a clustering objective

Twofold contribution:

2. Hierarchical algorithm: start from Z(X*) and merge clusters using log o

ZE) < < zO

- Produces a dendrogram
- Ordering of the cluster (useful for visualization)
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Greedy maximimization of ICLex: a
genetic algorithm




Greedy local search

Goal: Optimize ICLgy directly with respect to Z

ZE") ¢ argmaxICLe(Z, K) (3)
K.Z

Combinatorial problem: B,, possible partitions (n-th Bell number)
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Greedy local search

Goal: Optimize ICLgy directly with respect to Z

ZE") ¢ argmaxICLe(Z, K) (3)
K.Z

Combinatorial problem: B,, possible partitions (n-th Bell number)

Existing solution: greedy local search (Come et al. 2015)

1. Starts with an overly segmented Z (%)
2. Swap moves: greedily change clusters until convergence (empty clusters)

3. Merge moves: greedily merge clusters until convergence

Output: locally optimal partition Z(X") with K* automatically selected
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Improving greedy local search

— Pros: Fast & competitive w.rt alternatives e.g. (V)EM

— Cons: Exploitation is good, but exploration is hard

- Initialization: ICLey is highly-multimodal | seeding is important
- Existence of sub-optimal local maxima (in term of clustering, i.e. underfitting)

Our proposition: improve exploration with a genetic algorithm (GA)

— Grow a set of V candidates
— Recombination, mutation, natural selection

— Hybrid GA: use greedy local search on each generation.

1/24



Algorithm: Standard genetic algorithm

Input: Population size: V, probability of mutation: pm, maxgen
// Initialization
1. Start with V random partitions

// Population evolution
for n = 1 to maxgen do

Sample V pairs of candidates (according to ICLey rank)
for each pair (Z', Z?) do
- Recombination: Z = Cross(Z*, Z?) (cross-over)

- Apply random splits to Z with proba pm (mutation)

end
end
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Algorithm: Hybrid genetic algorithm

Input: Population size: V, probability of mutation: pm, maxgen
// Initialization
1. Start with V random partitions

2. Update each partitions with greedy swapping (delete empty clusters)

// Population evolution
for n = 1 to maxgen do

Sample V pairs of candidates (according to ICLey rank)
for each pair (Z', Z?) do

- Recombination: Z = Cross(Z*, Z?) (cross-over)
- Use greedy local search on Z (merges)

- Apply random splits to Z with proba pm (mutation)

- If a random split occurs use greedy local search on Z (swaps)

end
end
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Crossover operator: cross-partition operator

- Solution space has a particular structure (must handle label switching)

- Integer encoding with single point crossover not well suited for the task

= Work on the space of partitions Z < P = {C4, ...,Ck} a partition of [n].
This space has an interesting operator the cross-partition operator

Cross-partition operator
Let Pt = {C1],...,Ck,} and P? = {C%, ..., C%_} be two partition of [n] the
cross-partition operator x is defined by:

Plx P2 = {C; NC?, Vke{l,.. K}, Yiel, ...,KQ}} \ {0}
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Crossover operator: cross-partition operator

- Solution space has a particular structure (must handle label switching)

- Integer encoding with single point crossover not well suited for the task

= Work on the space of partitions Z < P = {C4, ..., Ck} a partition of [n].
This space has an interesting operator the cross-partition operator

Cross-partition operator
Example : P! = {{1,2,3},{4,5,6,7,8,9}} and P! = {{1,2,3,4,5,6},{7,8,9} }:

P! x P? ={{1,2,3},{4,5,6},{7,8,9}}
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Crossover operator: cross-partition operator

- Solution space has a particular structure (must handle label switching)

- Integer encoding with single point crossover not well suited for the task

= Work on the space of partitions Z < P = {C1,...,Ck} a partition of [n].
This space has an interesting operator the cross-partition operator

Cross-partition operator
Property:

Pl x P?is the coarsest refinement of P! and P? (both parents may be
reconstructed using merge operations).
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Crossover operator: cross-partition operator

- Solution space has a particular structure (must handle label switching)

- Integer encoding with single point crossover not well suited for the task

= Work on the space of partitions Z < P = {C4, ..., Ck} a partition of [n].
This space has an interesting operator the cross-partition operator

Cross-partition operator

- If both parent partitions are under-fitted, crossing them allows the algorithm
to go backward (and in the good direction) in the partition lattice,
considering finer clustering.

- Synergy with greedy merge operations done afterwards to avoid over-fitting
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Cross-partition: an illustration

Hierarchical nested SBM with A = 15 and n = 1500

15
6,
10 {4
o * x X 0.001
Yij | zinz =1~ B(6y), 0" = . W 0%
04, .
0 5 10 15

rsbm(n, Pi, Theta)
greed(sbm$x, model=Sbm())

> sbm
> fit
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Cross-partition: an illustration

Solution P! is a local optimum after greedy swap :

SBM model with : 12 clusters.

7%
12%
) Link density
6% 000
0 003

0.06

6%
. 0.09

N .
13%

13% 8% 15% 6% 7% 6% 7% 12% 7% 6% 6% 7%

Pb: under-fitting, local swap optima
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Cross-partition: an illustration

Solution P2 is another local optimum after greedy swap :

SBM model with : 15 clusters.

% Link density

6% 0.00
005

7%

010
7% . 015
7%
SRR
7% ‘
7%
6%

6% 7% 7% 7% 7% 7% 7% 6% 7% 6% 14% 7% 13%

Pb: under-fitting (and over-fitting), local swap optima
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Cross-partition: an illustration

Solution P x P2

SBM model with : 24 clusters.

6%
6%
6%
7%
6%
7%
Link density
&5 00
79% 0.1
02
7%
03
8% 04
[ I
7%
6%
6%
7%
7%

T% T% 6% 6% 7% 8% 7% 7% 6% 7% 6% 7% 6% 6% 6%

Pb: over-fitting
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Crossover operator: cross-partition operator

Solution P! x P2 + greedy merge:

SBM model with : 15 clusters.

Link density
0.00
003
0.06

.009

7% T% 6% 6% 7% 8% 7% 7% 7% 7% 6% 7% 7% 6% 6%

Simulated partition is recovered

18/24



A sketch of the hierarchical algorithm

Goal: hierarchy construction from Z®&")

» access to “simpler” partitions and highlight relationship between clusters

» useful E.D.A tools: dendogram, cluster ordering,...

Standard agglomerative method: starts from Z (&™)

» At stage k, find the best fusion w.rt ICLey. Repeat until k=1
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A sketch of the hierarchical algorithm

Goal: hierarchy construction from Z®&")

» access to “simpler” partitions and highlight relationship between clusters

» useful E.D.A tools: dendogram, cluster ordering,...
Standard agglomerative method: starts from Z (&™)

» At stage k, find the best fusion w.rt ICLey. Repeat until k=1

Problem: fusions are not possible in term of ICLgy
Solution:

- Use o hyper-parameter as a regularization parameter

- Extract a set of dominating nested partitions
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A quick introduction to the greed
package




Implementation and API

greed is available on CRAN and it is

- Flexible - can handle categorical, count, continuous, graphs or a combination
- Quick - especially for networks
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Implementation and API

greed is available on CRAN and it is

- Flexible - can handle categorical, count, continuous, graphs or a combination
- Quick - especially for networks

Main usage via the greed() function

> sol <- greed(X,model)
> ¢l <- clustering(sol)

Many generic functionalities such as

e Plot > plot(sol, type="tree")
e Explore > sol_K2 <- cut(sol, K=2)
e MAP estimate — 6 | Z(X) > theta <- coef(sol)
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Graph clustering: the book dataset

> sol_sbm = greed(Books$X, model=Sbm())
> plot(sol_sbm, type)

SBM model with : 5 clusters. SBM 5 clusters, dendogram

150 4

Link density
100 4

N
3
2
cooo
PPNt
—log(a)

11%
11% 28% 19% 34%% 0+

type="blocks" type="tree"
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Continuous data: diabetes data

1| 2| 3
Chemical | 11 | 24 | 1
Normal 731 3| 0
Overt 0 6| 27

> sol_gmm = greed(X, model=Gmm())

Gmm clustering with 3 clusters. GMM 3 clusters, dendogram

JA

gmmpairs(sol_gmm, X) plot(sol_gmm, "tree")
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Heterogeneous data: the fifa dataset

> X = list(cat=Xcat, num=Xnum)
> mods <-list(cat=LcaPrior(), num=GmmPrior())
> sol_cb = greed(X, model=CombinedModels(mods))
> submod = extractSubModel(sol, name)
> plot(submod, type="marginals")
FRELERI AR ANRIVAUIAN
i i S s S -
$ i F ; T e seeun e
INIDAI e B

name="cat" name="num"
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Conclusion




Model-based approach for clustering and hierarchical clustering

Pros

- Applies to a wide range of data, e.g. counts, categorical or graphs
- Handles heterogeneous data

- Efficient algorithms relying on greedy heuristics (bypass inference)
- Uses random initializations

- Article also covers the co-clustering case with Latent Block Models
cons

- Cannot fix the desired number of clusters K*.
- Needs an exact ICL

If you are interested:

» Journal article available here (published in ADAC)
» Implementation details and package description here (submitted to JSS)
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https://hal.archives-ouvertes.fr/hal-02530705
https://arxiv.org/pdf/2204.14063.pdf

Thank you for your attention !




Questions ?
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Combined models




Combined models

Context

-V views of the data (e.g. Multiplex networks, heterogeneous data)
- X ={Xy},;. v — Xyisthe v-thviews of the data

Stack observational models {M,} with conditional independence assumption

p(Xl,...,Xv|Z):p(X1 |M1,Z)X...><p(Xv|MV,Z).

ICLgy of the whole dataset is simply the sum of the submodels ICLgy



Experimental results: medium-scale SBM

Hierarchical nested SBM with A = 15 and n = 1500

15
10 Bk

Y | ziwz =1 ~ B(6g), 0 =" . - §§§§
% & 10 1

> sbm
> fit

rsbm(n,Pi,Theta)
greed(sbm$x,model=new("sbm"),alg=new("hybrid",pop_size=40

Compare with (implemented in the package)

» Spectral clustering (Qin et al. 2013)
» Greedy local search: unique / multiple / spectral initializations



Standard greedy

Link density  0.00  0.02 = 0.04 M 0.06

33%

21%

12%

12% 21%

—log(a)

15000-

10000-

5000-

33%

34%

Genetic Genetic + Hierarchical

79%6%6% 7% 6% 6% 7% 7% 8% 7% 7% 6% 7% 7% 7%

7% 7% 7% 7% 6% 7% 8% 6% 6%6%6% 7% 7% 7% 7%




Hierarchical model-based clustering
in DLVMs




A novel approximation for the ICLy

D(Ka) [T, (o + mg)

ICLex(Z,0) = D(Z) +logp(Z | o), logp(Z | o) =log — i

: asymptotic of logI" near 0

logT'() fatie log(a)

Log-linear ICL

ICL;in(ZW, a) = (k — 1) log(a) + I(Z™®)

[(Z(k)) _ D(z(/“)) + Zle log F(nl) — log F(TL) - 10g<k’)



ICLy;, as lines of increasing slope with K

-84000

-87000

ICLjin

—90000

-93000

-1000

-500

-2500

-2000

-1500

log(a)



A discrete Pareto frontier

-3000-

-3200-

ICLji,

-3400-

o

-300 -200 -100
log(a)

—-400



Fusion opportunity at stage (k)

Fixed partition Z® with & clusters

Two clusters (g, h): ICLj, change for gU h ?

Agun(@) = ICLin (2, 0) —ICLyy (29, a)

Proposition

Vg # by Agua(0) > 0 <= log(a) < 1(2%),) - 1(2¥)

unlocks fusions

Question: k(k — 1)/2 fusions, which one is the best ?

* k
(g%, h*) = arg max 1(Z,),)



Hierarchy construction and dendrogram representation

Repeat procedure at each stage Z(*)

loga® = 1(z"),.) - 1(Z2®)

Outputs a hierarchy of partitions

Dendrogram representation:

- a® is the amount of regularization needed for the fusion

- Extract a front of dominating partitions on range [a(*=1), a(®)]
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