A gentle introduction to the Variational Neural Networks

J. Aubert and S. Donnet for StateOfTheR Dec. 2021

Context

- In statistical learning, two main tasks:
 - Regression or classification
 - Reduction of dimension

Neural networks are used to construct the regression function, classifier or encoder-decoder (autoencoder).

- Variational versions are used when we do not want to optimize a parameter but a probability distribution
 - if one wants to structure the latent space
 - if one wants to perform Bayesien inference
- Relies on
 - Neural networks : we know already
 - Variational EM algorithm: we know already, but anyway it is not complicated

Overview

- 1. Basics on regression, classification, reduction of dimension
- 2. Neural networks
- 2.1 Definition of neural networks
- 2.2 PCA versus autoencoder
- 2.3 A few reminder on the optimization procedure
- 3. Variational versions of neural networks
- 3.1 Motivations
- 3.2 Variational bayesian inference
- 3.3 Variational (probabilistic) autoencoder

Basics on regression,

dimension

classification, reduction of

Regression or classification

- Let (X, Y) be our dataset:
 - $(X,Y) = (X_i, Y_i)_{i \in 1,...,N_{obs}}$
 - $\forall i = 1, ..., N_{obs}$, Variables $X_i \in \mathbb{R}^n$.
 - $Y_i \in \mathcal{Y}$ the variable to explain : classification or regression
- Looking for a function f classifier or regression
 - $f: \mathbb{R}^n \mapsto \mathcal{Y}$ and
 - such that

$$Y \approx f(X) \Leftrightarrow \mathsf{Loss}(Y - f(X)) \mathsf{small}$$

- If regression Loss $(Y f(X)) = ||Y f(X)||^2$
- If classification : Loss = cross-entropy

Regression or classification

Reduction of dimension

Autoencoders are used for the reduction of dimension of (large) datasets.

Let X be our dataset: $\mathbf{X} = (X_i)_{i \in 1,...,N_{obs}}$

- $\forall i = 1, \ldots, N_{obs}, X_i \in \mathbb{R}^n$.
- Looking for two functions
 - **Encoder** $e : \mathbb{R}^n \mapsto \mathbb{R}^m$ with $m \le n$ and
 - **Decoder** $d: \mathbb{R}^m \mapsto \mathbb{R}^n$
- such that

$$X \approx d(e(X)) \Leftrightarrow ||X - d(e(X))||^2 \text{ small}$$

• Z = e(X) : latent variable

Autoencoder

Neural networks

Neural networks

Definition of neural networks

About *f*: neural networks

About d and e: neural networks

About neural networks

One neuron : $f_j(\mathbf{X}) = \phi(\langle w_j, \mathbf{x} \rangle + b_j)$ where

- ullet ϕ the activation function : non linear
- $w_j = (w_j^1, \dots, w_j^n)$ are the weights of the input variables (x^1, \dots, x^n)
- b_i is the bias of neuron j.

At each layer ℓ of the neural network:

- Receive $n_{\ell-1}$ input variables $\mathbf{y}^{\ell-1} = (y_1^{\ell-1}, \dots, y_{n_{\ell-1}}^{\ell-1})$
- Create n_ℓ new variables. For variable j of layer l:

$$y_j^\ell = \phi(\langle w_j^\ell, \mathbf{y}^{\ell-1} \rangle + b_j^\ell)$$

Unknown parameters θ

- $w_j^\ell \in \mathbb{R}^{n_{\ell-1}}$, for $\ell=1,\ldots L$, for $j=1,\ldots,n_\ell$,
- $b_i^\ell \in \mathbb{R}$, for $\ell = 1, \ldots L$, for $j = 1, \ldots, n_\ell$,

Model choice

To choose:

- The number of layers *L*
- The number of neurons in each layer: n_ℓ :
- possibly $n_{\ell} > n$
- For **autoencoder** the middle layer *m* < *n*
- The activation function ϕ (possibly one for the hidden layers ϕ and one ψ for the activation layer)

Learning \overline{f} , d and e

Regression or classification

 $\theta = (w_j^{\ell}, b_j^{\ell})_{j=1,\dots,n_{\ell},\ell=1,\dots,L}$ are calibrated on a dataset $(X_i, Y_i)_{i=1,\dots,N_{obs}}$ by minimizing the loss function

$$\widehat{\theta} = \operatorname{argmin}_{\theta \in \Theta} \sum_{i=1}^{N_{obs}} \operatorname{Loss}(Y_i - f_{\theta}(X_i))$$

Autoencoder

 $\theta=(w_j^\ell,b_j^\ell)_{j=1,\dots,n_\ell,\ell=1,\dots,L}$ are calibrated on a dataset $(X_i)_{i=1,\dots,N_{obs}}$ by minimizing the loss function

$$\widehat{\theta} = \operatorname{argmin}_{\theta \in \Theta} \sum_{i=1}^{N_{obs}} ||X_i - d_{\theta} \circ e_{\theta}(X_i)||^2$$

Optimisation by Stochastic gradient descent: see later for a reminder of the principle

Neural networks

PCA versus autoencoder

PCA versus autoencoder

- Let $P \in M_{n,m}(\mathbb{R})$,
- Hyp.:

$$P'P = I_n$$

- Let $P'X_i$ is the projector of vector X_i on the sub-vectorial space generated by the columns of P.
- We are looking for *P* minimizing the inertia of the projected dataset:

$$\begin{split} \widehat{P} &= \operatorname{argmax}_{\{P \in M_{n,m}(\mathbb{R}), P'P = I_n\}} \sum_{i=1}^{N_{obs}} ||P'X_i||^2 \\ &= \operatorname{argmin}_{\{P \in M_{n,m}(\mathbb{R}), P'P = I_n\}} \sum_{i=1}^{N_{obs}} ||X_i - PP'X_i||^2 \end{split}$$

PCA versus autoencoder

- W' = e: **linear** encoder function
- W = d: **linear** decoder function
- Note that if you use neural networks with linear activation function and one layer, you will get W not necessarily orthogonal.

Lien vers une démonstration propre

Neural networks

A few reminder on the optimization procedure

Minimization by Stochastic gradient descent.

Algorithm (by Rumelhart et al (1988))

- Choose an initial value of parameters θ and a learning rate ρ
- Repeat until a minimum is reached:
 - Split randomy the training set into N_B batches of size b ($n = b \times N_B$)
 - for each batch B set:

$$\theta := \theta - \rho \frac{1}{b} \sum_{i \in B} \nabla_{\theta} \left\{ \mathsf{Loss}(f(\mathbf{X}_i, \theta), Y_i) \right\}$$

Remarks:

- Each iteration is called an *epoch*.
- The number of epochs is a parameter to tune
- Difficulty comes from the computation of the gradient

Calculus of the gradient for the regression

- $Y \in \mathbb{R}$.
- $R_i = \operatorname{Loss}(f(\mathbf{X}_i, \theta), Y_i) = (Y_i f(\mathbf{X}_i, \theta))^2$
- For any activation function ϕ (hidden layers) and ψ

Partial derivatives of R_i with respect to the weights of the last layer

- Derivatives of $R_i = (Y_i f(\mathbf{X}_i, \theta))^2 = (Y_i h^{(L+1)}(\mathbf{X}_i))^2$ with respect to $(w_j^{(L+1)})_{j=1...J_L}$
- $a^{(L+1)}(\mathbf{X}) = b^{(L+1)} + w^{(L+1)}h^{(L)}(\mathbf{X}) \in \mathbb{R}^J$

$$f(\mathbf{X}, \theta) = h^{(L+1)}(\mathbf{X})$$

$$= \psi(a^{(L+1)}(\mathbf{X}))$$

$$= \psi\left(b^{(L+1)} + \sum_{j=1}^{J_L} w_j^{(L+1)} h_j^{(L)}(\mathbf{X})\right)$$

$$\frac{\partial R_i}{\partial w_i^{(L+1)}} = -2\left(Y_i - f(\mathbf{X}_i, \theta)\right) \psi'\left(a^{(L+1)}(\mathbf{X}_i)\right) h_j^{(L)}(\mathbf{X}_i)$$

Partial derivatives of R_i with respect to the weights of the layer L-1

■ Derivatives of
$$R_i = (Y_i - h^{(L+1)}(\mathbf{X}_i))^2$$
 with respect to $(w_{jm}^{(L)})_{j=1...J_L,m=1...J_{L-1}}$

i

$$\frac{\partial R_i}{\partial w_{jm}^{(L)}} = -2 \left(Y_i - f(\mathbf{X}_i, \theta) \right) \psi' \left(a^{(L+1)}(\mathbf{X}_i) \right) \frac{\partial}{\partial w_{jm}^{(L)}} a^{(L+1)}(\mathbf{X}_i)$$

Partial derivatives of R_i with respect to the weights of the layer L-2

$$a^{(L+1)}(\mathbf{X}) = b^{(L+1)} + \sum_{j=1}^{J_L} w_j^{(L+1)} h_j^{(L)}(\mathbf{X})$$

$$= b^{(L+1)} + \sum_{j=1}^{J_L} w_j^{(L+1)} \phi \left(b_j^{(L)} + \sum_{m=1}^{J_{L-1}} w_{jm}^{(L)} h_m^{(L-1)}(\mathbf{X}) \right)$$

$$\frac{\partial}{\partial w_{jm}^{(L)}} a^{(L+1)}(\mathbf{X}_{i}) = w_{j}^{(L+1)} \phi' \left(b_{j}^{(L)} + \sum_{m=1}^{J_{L-1}} w_{jm}^{(L)} h_{m}^{(L-1)}(\mathbf{X}_{i}) \right) \\
\times h_{m}^{(L-1)}(\mathbf{X}_{i}) \\
= w_{j}^{(L+1)} \phi'(a_{j}^{L}(\mathbf{X}_{i})) h_{m}^{(L-1)}(\mathbf{X}_{i})$$

Forward-Backward algorithm (at each iteration)

After some light effort, recurrence formula

- Given the current parameters
 - Forward step : From layer 1 to layer L+1, compute the $a_i^{\ell}(\mathbf{X}_i), \phi(a_i^{\ell}(\mathbf{X}_i))$
 - **Backward step**: From layer L+1 to layer 1, compute the partial derivatives (recurrence formula update)

Tuning the algorithm

- ρ : learning rate of the gradient descent
 - $\, \bullet \,$ if ρ too small, really slow convergence with possibly reaching of a local minimum
 - ullet if ho too large, maybe oscilliation around an optimum without stabilisation
 - Adaptive choice of ρ (decreasing ρ)
- Batch calculation reduces the number of quantities to be stored in the forward / backward

Obviously

Many improved versions of the maximisation algorithm (momentum correction, Nesterov accelerated gradient, etc. . .)

Automatic differentiation

Success of the neural network comes from automatic differentiation, i.e. automatisation of the previously described forward-backward procedure to compute the derivatives: Tensorflow

Variational versions of neural

networks

Variational versions of neural

networks

Motivations

Why variational neural networks?

Regression-Classification : Bayesian inference of the parameters θ

- Prior on θ : $\pi(\theta)$
- Estimation not of θ but of the posterior distribution of θ : $p(\theta|\mathbf{Y})$

Autoencoder: give a structure on the latent space Z

- Distribution on Z: $\pi(Z)$
- Point estimation of θ and estimation of the posterior distribution of Z : p(Z|θ, X)

Variational: approximation of the distributions

- $p(\theta|\mathbf{Y}) \approx q_{\mathbf{Y}}(\theta)$
- $p(Z|\theta,\mathbf{X})\approx q_{\mathbf{X}}(Z)$

Using the autoencoder to simulate

- The optimization of the autoencoder supplies $(Z_1, ..., Z_{N_{obs}}) = (e(x_1), ..., e(X_{N_{obs}}))$
- How can we simulate the z's such that d(z) looks like my original data?
- How to construct a "machine" able to generate coherent other Z_i .
- Need to constrain/ structure the latent space.

Probabilistic version of the autoencoder

- Idea: put a probabilistic distribution on the latent space and estimate the posterior distribution.
- A statistical model with latent variables

$$X_{i} = d(Z_{i}) + \epsilon_{i}$$

$$Z_{i} \sim_{i.i.d.} N_{m}(0, I_{m})$$

$$\epsilon_{i} \sim_{i.i.d.} \mathcal{N}_{n}(0, cI_{n})$$

Likelihood

$$\ell(\mathbf{X};d) = \int_{\mathbf{Z}} p(\mathbf{X}|\mathbf{Z};d)p(\mathbf{Z})d\mathbf{Z}$$

Not explicit

EM requires the posterior distribution of Z

$$p(\mathbf{Z}|\mathbf{X};d) \propto p(\mathbf{X}|\mathbf{Z};d)p(\mathbf{Z})$$

Variational versions of neural

networks

Variational bayesian inference

Principal of variational Bayesian inference

- Approximate the posterior $p(\theta|Y)$ by $q(\theta)$ where $q \in \mathcal{R}$
- \mathcal{R} family of simpler distributions. **Example**: $q(\cdot) = \mathcal{N}(\mu, \Sigma)$
- Approximating = Minimizing

$$D_{\mathsf{KL}}(q(\theta), p(\theta|\mathbf{Y})) = \mathbf{E}_q \left[\log \frac{q(\theta)}{p(\theta|\mathbf{Y})} \right]$$

The Magik trick

$$D_{\mathsf{KL}}(q(\theta), p(\theta|\mathbf{Y})) = \log \ell(\mathbf{Y}) + \left[-\underbrace{\mathbf{E}_q[\log \ell(\mathbf{Y}|\theta)\pi(\theta)] + \mathbf{E}_q[\log q(\theta)]}_{\mathcal{F}(q)} \right]$$

- $\log \ell(\mathbf{Y})$ independent of q
- Minimizing the Kullback–Leibler divergence w.r. to q is equivalent to minimizing $\mathcal{F}(q)$ with respect to q

$$\mathcal{F}(q) = -\mathbf{E}_q[\log \ell(\mathbf{Y}|\theta)\pi(\theta)] + \mathbf{E}_q[\log q(\theta)]$$
 (1)

$$= -\mathbf{E}_{q}[\log \ell(\mathbf{Y}|\theta)] + \mathbf{E}_{q} \left[\log \frac{q(\theta)}{\pi(\theta)}\right]$$
 (2)

$$= D_{\mathsf{KL}}(q, \pi) - \mathbf{E}_q[\log \ell(\mathbf{Y}|\theta)]$$
 (3)

Parametrization of q

Choose a **parametric** form in $q = q_{\eta}$.

• For example: $q = \mathcal{N}(\mu, \Sigma)$

$$\hat{\eta} = \arg\min_{\eta} \mathcal{F}(\eta) = \arg\min_{\eta} D_{\mathsf{KL}}(q_{\eta}, \pi) - \mathbf{E}_{q_{\eta}}[\log \ell(\mathbf{Y}|\theta)]$$

- Optimisation by gradient descent
- BUT expectation not explicit

Monte Carlo approximation

- With neural networks, $\mathbf{E}_{q_{\eta}}[\log \ell(\mathbf{Y}|\theta)]$ not explicit (activation functions non linear)
- Approximation by Monte Carlo : assume that $\theta^{(m)} \sim q_{\eta}$, $m=1,\ldots,M$

$$\widehat{\mathcal{F}}(\eta) = \frac{1}{M} \sum_{m=1}^{M} \log \frac{q_{\eta}(\theta^{(m)})}{\pi(\theta^{(m)})} - \log \ell(\mathbf{Y}|\theta^{(m)})$$

- **Problem**: we lost the explicit dependence in η through the simulations $\theta^{(m)}$
- Solution : reparametrisation

$$\boldsymbol{\xi^{(m)}} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$
 and $\boldsymbol{\theta^{(m)}} = \phi(\boldsymbol{\xi^{(m)}}, \boldsymbol{\eta})$

$$\widehat{\mathcal{F}}(\eta) = \frac{1}{M} \sum_{m=1}^{M} \log q_{\eta}(\phi(\xi^{(m)}, \eta)) - \log \pi(\phi(\xi^{(m)}, \eta)) - \log \ell(\mathbf{Y} | \phi(\xi^{(m)}, \eta))$$

Remarks

$$\widehat{\mathcal{F}}(\eta) = \frac{1}{M} \sum_{m=1}^{M} \log q_{\eta}(\phi(\xi^{(m)}, \eta)) - \log \pi(\phi(\xi^{(m)}, \eta)) - \log \ell(\mathbf{Y} | \phi(\xi^{(m)}, \eta))$$

- People take M=1
- $D_{\mathsf{KL}}(q_{\eta},\pi)$ may be explicit (for Gaussian distributions for instance) but not used in practice
- $\xi^{(m)}$ are resimulated each time we compute the gradients

More details for the regression case

- θ are the parameters (weights and bias)
- Prior gaussian distribution on θ : $\theta \sim \mathcal{N}(0, \mathbb{I})$
- If regression $Y_i = f_{\theta}(X_i) + \epsilon_i$, $\epsilon \sim \mathcal{N}(0, \sigma^2)$

$$-\ell(\mathbf{Y}, \phi(\xi^{(m)}, \eta)) = \left[\sum_{i=1}^{N_{obs}} \frac{||Y_i - f_{\phi(\xi^{(m)}, \eta)}(X_i)||^2}{2\sigma^2}\right]$$

Variational versions of neural

networks

Variational (probabilistic) autoencoder

The problem

$$\mathbf{X}_{i} = d_{\theta}(Z_{i}) + \epsilon_{i}$$

$$Z_{i} \sim i.i.d. N_{m}(0, I_{m})$$

$$\epsilon_{i} \sim i.i.d. \mathcal{N}_{n}(0, \sigma^{2} I_{n})$$

Likelihood

$$\ell(\mathbf{X};d_{ heta}) = \int_{\mathbf{Z}} \ell(\mathbf{X}|\mathbf{Z};d_{ heta})
ho(\mathbf{Z}) d\mathbf{Z}$$

No explicit form, linked of the fact that $p(\mathbf{Z}|\mathbf{X};d_{ heta})$ is complex

The Evidence Lower BOund (ELBO)

• Let's simplify that distribution $p(\mathbf{Z}|\mathbf{X}; d_{\theta})$

$$\begin{array}{rcl} p(\mathbf{Z}|\mathbf{X};d_{\theta}) & \approx & q_{\mathbf{X}}(\mathbf{Z};g,H) \\ \prod_{i=1}^{N_{obs}} p(Z_{i}|X_{i};d_{\theta}) & \approx & \prod_{i=1}^{N_{obs}} q_{X_{i}}(Z_{i};g,H) \\ q_{X_{i}}(Z_{i};g,H) & = & \mathcal{N}_{m}(g(\mathbf{X}_{i}),H(g(\mathbf{X}_{i}))) \end{array}$$

where g and H are chosen such that $D_{KL}(q(\mathbf{Z}; \mathbf{X}, g, H), p(\mathbf{Z}|\mathbf{X}; d_{\theta}))$ is small

Replace the likelihood by the ELBO

$$\begin{aligned} \mathsf{ELBO}(d_{\theta}, g, H) &= \ell(\mathbf{X}; d_{\theta}) - D_{\mathsf{KL}}(q(\mathbf{Z}; \mathbf{X}, g, H), p(\mathbf{Z}|\mathbf{X}; d)) \\ &= \mathbb{E}_{q_{\mathbf{X}}(\mathbf{Z}; g, H)}[\log p(\mathbf{X}|\mathbf{Z}; d_{\theta})] - D_{\mathsf{KL}}(q_{\mathbf{X}}(\mathbf{Z}; g, H), p(\mathbf{Z})) \end{aligned}$$

Optimization: minimize $-\mathsf{ELBO}(d, g, H)$

$$-\mathsf{ELBO}(d,g,H) = -\mathbb{E}_{q_{\mathbf{X}}(\mathbf{Z};g,H)}[\log p(\mathbf{X}|\mathbf{Z};d_{\theta})] + D_{\mathsf{KL}}(q_{\mathbf{X}}(\mathbf{Z};g,h),p(\mathbf{Z}))$$

Reconstruction term

$$-\mathbb{E}_{q_{\mathbf{X}}(\mathbf{Z};g,H)}[\log p(\mathbf{X}|\mathbf{Z};d_{\theta})] = \mathbb{E}_{q_{\mathbf{X}}(\mathbf{Z};g,H)}\left[\sum_{i=1}^{N_{obs}}\frac{||\mathbf{X}_{i} - d_{\theta}(Z_{i})||^{2}}{2\sigma^{2}}\right]$$

- **Regularisation** term : D_{KL}
- σ^2 : variance parameter which balances regularisation and reconstruction

About d_{θ} , g and H

 $d_{ heta}$ neural network function as before

About g and H: called the "encoder part"

- H(X) is a covariance so
 - it should be a square symmetric matrix
 - **Simplification**: diagonal matrix $H(\mathbf{X}) = diag(h^2(X))$ where $h(X) \in \mathbb{R}^m$
- $h(X) = h_2(h_1(X)), g(X) = g_2(g_1(X)), g_1 = h_1$
- $g_2,g_2,\ h_1$ neural networks

About the expectation

- $\mathbb{E}_{q_{\mathbf{X}}(\mathbf{Z};g,h)} \left[\sum_{i=1}^{N_{obs}} \frac{||\mathbf{X}_i d_{\theta}(Z_i)||^2}{2\sigma^2} \right]$ can not be evaluated.
- Monte Carlo approximation on 1 realization
- Reparametrisation trick

$$Z_i^{sim} = g(X_i) + diag(h(X_i))\zeta_i, \quad \text{ with } \xi_i \sim \mathcal{N}_m(0, \mathbb{I}_m)$$

$$\mathbb{E}_{q_{\mathbf{X}}(\mathbf{Z};g,h)} \left[\sum_{i=1}^{N_{obs}} \frac{||\mathbf{X}_{i} - d_{\theta}(Z_{i})||^{2}}{2\sigma^{2}} \right] \approx \sum_{i=1}^{N_{obs}} \frac{||\mathbf{X}_{i} - d_{\theta}(Z_{i}^{(sim)})||^{2}}{2\sigma^{2}}$$
$$\sum_{i=1}^{N_{obs}} \frac{||\mathbf{X}_{i} - d_{\theta}(g(X_{i}) + diag(h(X_{i}))\zeta_{i})||^{2}}{2\sigma^{2}}$$

Finally...

$$loss \ = \ C \ || \ x - x^{'}||^{2} \ + \ KL[\ N(\mu_{x}, \sigma_{x}), \ N(0, I) \] \ = \ C \ || \ x - f(z) \ ||^{2} \ + \ KL[\ N(g(x) \ , \ h(x)), \ N(0, I) \]$$

Conclusion

- Easy to understand all the tools
- Now, how easy is it to encode this?