A gentle introduction to the Variational
Neural Networks

J. Aubert and S. Donnet for StateOfTheR
Dec. 2021

Context

= |n statistical learning, two main tasks:
= Regression or classification
= Reduction of dimension
Neural networks are used to construct the regression function,
classifier or encoder-decoder (autoencoder).
= Variational versions are used when we do not want to optimize a
parameter but a probability distribution
= if one wants to structure the latent space
= if one wants to perform Bayesien inference
= Relies on

= Neural networks : we know already
= Variational EM algorithm: we know already, but anyway it is not
complicated

Overview

1. Basics on regression, classification, reduction of dimension

2. Neural networks
2.1 Definition of neural networks
2.2 PCA versus autoencoder

2.3 A few reminder on the optimization procedure

3. Variational versions of neural networks
3.1 Motivations
3.2 Variational bayesian inference

3.3 Variational (probabilistic) autoencoder

Basics on regression,
classification, reduction of

dimension

Regression or classification

= Let (X,Y) be our dataset:

= (XY) = (X, Yi)iet, .. Noss

= Vi=1,..., Nos, Variables X; € R".

= Y; € Y the variable to explain : classification or regression
= Looking for a function f classifier or regression

= f:R"+—)Y and

= such that

Y = f(X) < Loss(Y — (X)) small
= If regression Loss(Y — f(X)) = ||Y — £(X))|?
= |f classification : Loss = cross-entropy

Regression or classification

dim:n

Reduction of dimension

Autoencoders are used for the reduction of dimension of (large)
datasets.

Let X be our dataset: X = (Xi)ic1,.... N,
s Vi=1,..., Nops X; € R

= Looking for two functions

= Encoder e : R" — R™ with m < n and
= Decoder d : R” — R”

= such that
X = d(e(X)) < ||X — d(e(X))|[* small

= Z =¢(X) : latent variable

dim:n

encoder : e

/

z =e(x)
dim:m

d(e(x) ~=x

decoder : d

dim:n

Neural networks

Neural networks

Definition of neural networks

About f: neural networks

dim:n

<

Layer1

Layer 2

Layer L

About d and e : neural networks

— encoder : e MR

dim:n > dim:n

Layer | made of
n_| nodes

About neural networks

One neuron : f;(X) = ¢(< wj,x > + b;) where

= ¢ the activation function : non linear

= w = (W

= b; is the bias of neuron j.

., wj") are the weights of the input variables (xt, ..., x™)

At each layer /¢ of the neural network:

o— _
= (yl 17"'7yr€4,11)

= Create ny new variables. For variable j of layer /:

= Receive ny_; input variables y‘~!
¢ £ -1 ‘
yi = (< wj,y" > +bj)

Unknown parameters 6

L] vvj’zeR"ffl,forﬂzl,...L, forj=1,...,n,

= bfeR for{=1,...L forj=1,...,n,

10

Model choice

To choose:

= The number of layers L

= The number of neurons in each layer: ny :
= possibly ng > n

= For autoencoder the middle layer m < n

= The activation function ¢ (possibly one for the hidden layers ¢ and
one 1 for the activation layer)

11

Learning f,d and e

= Regression or classification

0= (Wf, bf)jzl,___,,,ﬂygzly__,,L are calibrated on a dataset (X;, Y;)i=1.....n,,.
by minimizing the loss function

Nobs

= argmingcg Z Loss(Y; — fy(Xi))
i=1

= Autoencoder

0 = (W, bf)j=1....n,,¢=1,...,. are calibrated on a dataset (X;)i=1,... v, by
minimizing the loss function

Nobs
8 = argmingcg Z || X; — dp o eg(X:)||?
i=1
Optimisation by Stochastic gradient descent: see later for a reminder

of the principle 1

Neural networks

PCA versus autoencoder

PCA versus autoencoder

= Let P e M, »n(R),

= Hyp.:
PP=1,
= Let P'X; is the projector of vector X; on the sub-vectorial space
generated by the columns of P.

= We are looking for P minimizing the inertia of the projected dataset:

Nobs

P = argmaxepem, .(R),P’ P=I,} Z ||'D/Xi”2
i=1
Nobs

= argmingpcpy, (R),P'P=1,} Z |[Xi — P'D/Xiuz
i=1

13

PCA versus autoencoder

= W' = e : linear encoder function
= W = d : linear decoder function

= Note that if you use neural networks with linear activation function
and one layer, you will get W not necessarily orthogonal.

Lien vers une démonstration propre

14

http://www.xavierdupre.fr/app/mlstatpy/helpsphinx/c_ml/rn/rn_9_auto.html

Neural networks

A few reminder on the optimization
procedure

Minimization by Stochastic gradient descent.

Algorithm (by Rumelhart et al (1988))

= Choose an initial value of parameters 6 and a learning rate p

= Repeat until a minimum is reached:

= Split randomy the training set into Ng batches of size b (n = b x Ng)
= for each batch B set:

6:=6— p% D Vo {Loss(f(X;,0), Yi)}
ieB

Remarks:

= Each iteration is called an epoch.
= The number of epochs is a parameter to tune

= Difficulty comes from the computation of the gradient

15

Calculus of the gradient for the regression

= YeR
» R; = Loss(f(X;,0),Y;) = (Y; — f(X;,0))?

= For any activation function ¢ (hidden layers) and ¢

16

Partial derivatives of R; with respect to the weights of the last

layer

= Derivatives of R; = (V; — f(X;,0))% = (V; — h(+D(X;))? with
respect to (w{")y.

. a(L+1)(X) = p(L+1) | W(L+1)h(L)(x) c R/

f(X,0) = hED(X)
P(altt)(X))
J
' (buﬂ) +> vvf“”hﬁ”(x>>
j=1
: OR;

P —2(Y; - f(X;,0)) ¥’ (3(L+1)(Xi)) hJ(‘L)(X;)
J

17

Partial derivatives of R; with respect to the weights of the layer

[-1

= Derivatives of R; = (V; — h(’-H)(X,-))2 with respect to

L
(ij(m))j:l...JL,m:I...JL_l

R _ : o (D)) 2 L x
9 J(,ﬁ) 2(Yl—f(xz,9))¢ (a (l)) aWJ(,#) (l)

18

Partial derivatives of R; with respect to the weights of the layer

L-2

J
a(L+1)(X) _ b(L+1)_|_ZWj(L+1)hJ(_L)(X)
j=1
w0, =
b(L+1)+ZWL+1¢ L +Z
j=1
0 w0, =W
L+1)(y \ L+1 L Dp(L-1)y.
S) = w60+ S W HTI(X)
jm m=1
x A1 (X;)
L _
— +1)¢5(ab (X)) hED(X))

19

Forward-Backward algorithm (at each iteration)

After some light effort, recurrence formula

= Given the current parameters

= Forward step : From layer 1 to layer L 4+ 1, compute the

a7 (Xi), ¢(a; (Xi))
= Backward step : From layer L 4 1 to layer 1, compute the partial
derivatives (recurrence formula update)

20

Tuning the algorithm

= p: learning rate of the gradient descent
= if p too small, really slow convergence with possibly reaching of a
local minimum
= if p too large, maybe oscilliation around an optimum without
stabilisation
= Adaptive choice of p (decreasing p)
= Batch calculation reduces the number of quantities to be stored in
the forward / backward

21

Many improved versions of the maximisation algorithm (momentum
correction, Nesterov accelerated gradient, etc. . .)

22

Automatic differentiation

Success of the neural network comes from automatic differentiation,
i.e. automatisation of the previously described forward-backward
procedure to compute the derivatives : Tensorflow

23

Variational versions of neural
networks

Variational versions of neural
networks

Motivations

Why variational neural networks?

Regression-Classification : Bayesian inference of the parameters 6

= Prior on 6: 7(6)
= Estimation not of § but of the posterior distribution of 6 : p(6]Y)

Autoencoder: give a structure on the latent space Z

= Distribution on Z: 7(Z)

= Point estimation of 6 and estimation of the posterior
distribution of Z : p(Z|6, X)

Variational : approximation of the distributions

= p(0]Y) ~ qv(0)
= p(Z16,X) ~ gx(2)

24

Using the autoencoder to simulate

Simulator of z's of
dimension m

decoder:d

z=elx) \

~

dim:m
\
~J1

= The optimization of the autoencoder supplies
(217 coog ZNobs) = (e(X1)7 2009 e(XNabs))

= How can we simulate the z’s such that d(z) looks like my original
data?

= How to construct a “machine” able to generate coherent other Z;.

= Need to constrain/ structure the latent space.

25

Probabilistic version of the autoencoder

= lIdea : put a probabilistic distribution on the latent space and
estimate the posterior distribution.
= A statistical model with latent variables

Xi = d(Z,) aF &
Zi ~i.i.d. Nm(07 Im)
€ ~iid. Nn(07 C/n)
= Likelihood
(X d) = [p(X|z: d)p(2)d2
Jz
Not explicit

= EM requires the posterior distribution of Z

p(ZIX; d) o p(X|Z; d)p(Z)

Very complex too 26

Variational versions of neural
networks

Variational bayesian inference

Principal of variational Bayesian inference

= Approximate the posterior p(6|Y) by g(6) where g € R
= R family of simpler distributions. Example: g(-) = N (p, X)

= Approximating = Minimizing

Dxo(q(0), p(0]Y)) = Eg |:|Og q(0) }

p(6Y)

27

The Magik trick

Dii(q(6), p(6]Y)) = log £(Y) + | — Eq[log £(Y|0)m(6)] + Eg[log q(0)]

F(q)

= log ¢(Y) independent of g
= Minimizing the Kullback—Leibler divergence w.r. to g is equivalent
to minimizing F(q) with respect to g

Fla) = —Eqllog(Y|o)x(6)] + Eqlog o(0)] 1)
q(9)
— o (Y|0)] + E, [log) @)

= Dxi(g,m) — Eqllog ((Y10)] (3)

28

Parametrization of g

Choose a parametric form in g = g,,.

= For example: g = N (p, X)

i) = arg min F(n) = arg min Dx(q,,) — Eg, [log £(Y|0)]
" "

= Optimisation by gradient descent
= BUT expectation not explicit

29

Monte Carlo approximation

= With neural networks, Eg, [log £(Y[#)] not explicit (activation
functions non linear)

= Approximation by Monte Carlo : assume that §(™ ~ an,
m=1....M

MZ| q" — log £(Y]0(™))

= Problem: we lost the explicit dependence in 7 through the
simulations 6("™

= Solution : reparametrisation

€M~ N(0,1) and 0™ = (™, 1)

M
Z og g, (¢(¢"™,m))—log m((¢'™, m))—log £(Y ('™, m))

30

M
Z 0g g, ((¢'™,m)) — log (4 (6™, 7)) — log £(Y[p (6™, 7))

= People take M =1

= Dki(gy,, ™) may be explicit (for Gaussian distributions for instance)
but not used in practice

= (M are resimulated each time we compute the gradients

31

More details for the regression case

= 0 are the parameters (weights and bias)
= Prior gaussian distribution on 6 : 6 ~ N(0,T)
= If regression Y; = fy(X;) +¢;, €~ N(0,0?)

oY, (£) = Z”Y fotem (XD

202
i—1

32

Variational versions of neural
networks

Variational (probabilistic) autoencoder

The problem

Xi = do(Zi) +e
Zi ~ id.Nmn(0,In)
& ~ iidNa(0,0°1,)

Likelihood
0(X: dy) = /£(X|Z;d9)p(2)dZ
VA

No explicit form, linked ot the fact that p(Z|X; dg) is complex

33

The Evidence Lower BOund (ELBO)

= Let's simplify that distribution p(Z|X; dp)

p(Z|X;dy) ~ qx(Z;g, H)
Nobs Nobs
[[p(ZiIXido) ~ []ax(Zig H)
i=1 =1

ax,(Ziig, H) = Nn(g(Xi), H(g(X7))

where g and H are chosen such that Dk (q(Z; X, g, H), p(Z|X; dy))
is small

= Replace the likelihood by the ELBO

ELBO(de, g, H) = K(X; dg) = DKL(q(Z; X g, H)v p(Z|X; d))
Egx(z:6.1)[l08 P(X|Z; dg)] — Dk (ax(Z; &, H), p(Z))

34

Optimization: minimize —ELBO(d, g, H)

—ELBO(d, g, H) = —Eqy(z;g,1)[log P(X|Z; dy)] + D«L(ax(Z; g, h), p(Z))

= Reconstruction term

Nobs
Xi — do(Z))|?
—Eqy(z:g,H)[log P(X|Z; dp)] = Eqy(z:g,H) [Z S

i=1

= Regularisation term : Dy

= o2 : variance parameter which balances regularisation and

reconstruction

35

About dy, g and H

dy neural network function as before
About g and H : called the "encoder part"

= H(X) is a covariance so
= it should be a square symmetric matrix
= Simplification: diagonal matrix H(X) = diag(h*(X)) where
h(X) € R™
* h(X) = ha(h(X)) g(X) = g2(&1(X)). &1 = m

= g»,&, h; neural networks

o =h(x) =h,(h,(x))
36

About the expectation

= E $obes M can not be evaluated
ax(Z:g,h) i=1 :
= Monte Carlo approximation on 1 realization

= Reparametrisation trick

Zim = g(Xi) + diag(h(X;))Ci, with & ~ Nin(0, L)

Z X, - d. Z)|

= |[Xi — do(Z)[17 *de DI
qx(Zgh

Nobs

Z X — de(g(Xi);Ugiag(h(Xi))QN\2

i=1

37

Finally...

N(o,)

o =h(x) x=1(2)

loss = C||x-xX]|* + KLIN(1 ,0),N(O,)] = C|[x-f(z)|]> + KL[N(g(x), h(x)), N(O,)]

38

Conclusion

= Easy to understand all the tools

= Now, how easy is it to encode this?

39

	Basics on regression, classification, reduction of dimension
	Neural networks
	Definition of neural networks
	PCA versus autoencoder
	A few reminder on the optimization procedure

	Variational versions of neural networks
	Motivations
	Variational bayesian inference
	Variational (probabilistic) autoencoder

