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Context

= |n statistical learning, two main tasks:
= Regression or classification
= Reduction of dimension
Neural networks are used to construct the regression function,
classifier or encoder-decoder (autoencoder).
= Variational versions are used when we do not want to optimize a
parameter but a probability distribution
= if one wants to structure the latent space
= if one wants to perform Bayesien inference
= Relies on

= Neural networks : we know already
= Variational EM algorithm: we know already, but anyway it is not
complicated
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Regression or classification

= Let (X,Y) be our dataset:

= (XY) = (X, Yi)iet, .. Noss

= Vi=1,..., Nos, Variables X; € R".

= Y; € Y the variable to explain : classification or regression
= Looking for a function f classifier or regression

= f:R"+— )Y and

= such that

Y = f(X) < Loss(Y — (X)) small
= If regression Loss(Y — f(X)) = ||Y — £(X))|?
= |f classification : Loss = cross-entropy



Regression or classification

dim:n




Reduction of dimension

Autoencoders are used for the reduction of dimension of (large)
datasets.

Let X be our dataset: X = (Xi)ic1,.... N,
s Vi=1,..., Nops X; € R

= Looking for two functions

= Encoder e : R" — R™ with m < n and
= Decoder d : R” — R”

= such that
X = d(e(X)) < ||X — d(e(X))|[* small

= Z =¢(X) : latent variable



dim:n

encoder : e

/

z =e(x)
dim:m

d(e(x) ~=x

decoder : d

dim:n



Neural networks



Neural networks

Definition of neural networks



About f: neural networks

dim:n

<
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Layer 2

Layer L



About d and e : neural networks

— encoder : e MR

dim:n > dim:n

Layer | made of
n_| nodes



About neural networks

One neuron : f;(X) = ¢(< wj,x > + b;) where

= ¢ the activation function : non linear

= w = (W

= b; is the bias of neuron j.

., wj") are the weights of the input variables (xt, ..., x™)

At each layer /¢ of the neural network:

o— _
= (yl 17"'7yr€4,11)

= Create ny new variables. For variable j of layer /:

= Receive ny_; input variables y‘~!
¢ £ -1 ‘
yi = (< wj,y" > +bj)

Unknown parameters 6

L] vvj’zeR"ffl,forﬂzl,...L, forj=1,...,n,

= bfeR for{=1,...L forj=1,...,n,
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Model choice

To choose:

= The number of layers L

= The number of neurons in each layer: ny :
= possibly ng > n

= For autoencoder the middle layer m < n

= The activation function ¢ (possibly one for the hidden layers ¢ and
one 1 for the activation layer)
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Learning f,d and e

= Regression or classification

0= (Wf, bf)jzl,___,,,ﬂygzly__,,L are calibrated on a dataset (X;, Y;)i=1.....n,,.
by minimizing the loss function

Nobs

= argmingcg Z Loss(Y; — fy(Xi))
i=1

= Autoencoder

0 = (W, bf)j=1....n,,¢=1,...,. are calibrated on a dataset (X;)i=1,... v, by
minimizing the loss function

Nobs
8 = argmingcg Z || X; — dp o eg(X:)||?
i=1
Optimisation by Stochastic gradient descent: see later for a reminder

of the principle 1



Neural networks

PCA versus autoencoder



PCA versus autoencoder

= Let P e M, »n(R),

= Hyp.:
PP=1,
= Let P'X; is the projector of vector X; on the sub-vectorial space
generated by the columns of P.

= We are looking for P minimizing the inertia of the projected dataset:

Nobs

P = argmaxepem, .(R),P’ P=I,} Z ||'D/Xi”2
i=1
Nobs

= argmingpcpy, (R),P'P=1,} Z |[Xi — P'D/Xiuz
i=1
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PCA versus autoencoder

= W' = e : linear encoder function
= W = d : linear decoder function

= Note that if you use neural networks with linear activation function
and one layer, you will get W not necessarily orthogonal.

Lien vers une démonstration propre
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http://www.xavierdupre.fr/app/mlstatpy/helpsphinx/c_ml/rn/rn_9_auto.html

Neural networks

A few reminder on the optimization
procedure



Minimization by Stochastic gradient descent.

Algorithm (by Rumelhart et al (1988))

= Choose an initial value of parameters 6 and a learning rate p

= Repeat until a minimum is reached:

= Split randomy the training set into Ng batches of size b (n = b x Ng)
= for each batch B set:

6:=6— p% D Vo {Loss(f(X;,0), Yi)}
ieB

Remarks:

= Each iteration is called an epoch.
= The number of epochs is a parameter to tune

= Difficulty comes from the computation of the gradient
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Calculus of the gradient for the regression

= YeR
» R; = Loss(f(X;,0),Y;) = (Y; — f(X;,0))?

= For any activation function ¢ (hidden layers) and ¢
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Partial derivatives of R; with respect to the weights of the last

layer

= Derivatives of R; = (V; — f(X;,0))% = (V; — h(+D(X;))? with
respect to (w{")y.

. a(L+1)(X) = p(L+1) | W(L+1)h(L)(x) c R/

f(X,0) = hED(X)
P(altt)(X))
J
' (buﬂ) +> vvf“”hﬁ”(x>>
j=1
: OR;

P —2(Y; - f(X;,0)) ¥’ (3(L+1)(Xi)) hJ(‘L)(X;)
J
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Partial derivatives of R; with respect to the weights of the layer

[-1

= Derivatives of R; = (V; — h(’-H)(X,-))2 with respect to

L
(ij(m) )j:l...JL,m:I...JL_l

R _ : o (D)) 2 L x
9 J(,ﬁ) 2(Yl—f(xz,9))¢ (a ( l)) aWJ(,#) ( l)
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Partial derivatives of R; with respect to the weights of the layer

L-2

J
a(L+1)(X) _ b(L+1)_|_ZWj(L+1)hJ(_L)(X)
j=1
w0, =
b(L+1)+ZWL+1¢ L +Z
j=1
0 w0, =W
L+1)(y \ L+1 L Dp(L-1)y.
S ) = w60+ S W HTI(X)
jm m=1
x A1 (X;)
L _
— +1)¢5( ab (X)) hED(X))
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Forward-Backward algorithm (at each iteration)

After some light effort, recurrence formula

= Given the current parameters

= Forward step : From layer 1 to layer L 4+ 1, compute the

a7 (Xi), ¢(a; (Xi))
= Backward step : From layer L 4 1 to layer 1, compute the partial
derivatives (recurrence formula update)
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Tuning the algorithm

= p: learning rate of the gradient descent
= if p too small, really slow convergence with possibly reaching of a
local minimum
= if p too large, maybe oscilliation around an optimum without
stabilisation
= Adaptive choice of p (decreasing p)
= Batch calculation reduces the number of quantities to be stored in
the forward / backward
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Many improved versions of the maximisation algorithm (momentum
correction, Nesterov accelerated gradient, etc. . .)
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Automatic differentiation

Success of the neural network comes from automatic differentiation,
i.e. automatisation of the previously described forward-backward
procedure to compute the derivatives : Tensorflow
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Variational versions of neural
networks




Variational versions of neural
networks

Motivations



Why variational neural networks?

Regression-Classification : Bayesian inference of the parameters 6

= Prior on 6: 7(6)
= Estimation not of § but of the posterior distribution of 6 : p(6]Y)

Autoencoder: give a structure on the latent space Z

= Distribution on Z: 7(Z)

= Point estimation of 6 and estimation of the posterior
distribution of Z : p(Z|6, X)

Variational : approximation of the distributions

= p(0]Y) ~ qv(0)
= p(Z16,X) ~ gx(2)
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Using the autoencoder to simulate

Simulator of z's of
dimension m

decoder:d

z=elx) \

~

dim:m
\
~J1

= The optimization of the autoencoder supplies
(217 coog ZNobs) = (e(X1)7 2009 e(XNabs))

= How can we simulate the z’s such that d(z) looks like my original
data?

= How to construct a “machine” able to generate coherent other Z;.

= Need to constrain/ structure the latent space.
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Probabilistic version of the autoencoder

= lIdea : put a probabilistic distribution on the latent space and
estimate the posterior distribution.
= A statistical model with latent variables

Xi = d(Z,) aF &
Zi ~i.i.d. Nm(07 Im)
€ ~iid. Nn(07 C/n)
= Likelihood
(X d) = [ p(X|z: d)p(2)d2
Jz
Not explicit

= EM requires the posterior distribution of Z

p(ZIX; d) o p(X|Z; d)p(Z)

Very complex too 26



Variational versions of neural
networks

Variational bayesian inference



Principal of variational Bayesian inference

= Approximate the posterior p(6|Y) by g(6) where g € R
= R family of simpler distributions. Example: g(-) = N (p, X)

= Approximating = Minimizing

Dxo(q(0), p(0]Y)) = Eg |:|Og q(0) }

p(6Y)

27



The Magik trick

Dii(q(6), p(6]Y)) = log £(Y) + | — Eq[log £(Y|0)m(6)] + Eg[log q(0)]

F(q)

= log ¢(Y) independent of g
= Minimizing the Kullback—Leibler divergence w.r. to g is equivalent
to minimizing F(q) with respect to g

Fla) = —Eqllog(Y|o)x(6)] + Eqlog o(0)] 1)
q(9)
— o (Y|0)] + E, [log ) @)

= Dxi(g,m) — Eqllog ((Y10)] (3)

28



Parametrization of g

Choose a parametric form in g = g,,.

= For example: g = N (p, X)

i) = arg min F(n) = arg min Dx(q,, ) — Eg, [log £(Y|0)]
" "

= Optimisation by gradient descent
= BUT expectation not explicit

29



Monte Carlo approximation

= With neural networks, Eg, [log £(Y[#)] not explicit (activation
functions non linear)

= Approximation by Monte Carlo : assume that §(™ ~ an,
m=1....M

MZ| q" — log £(Y]0(™))

= Problem: we lost the explicit dependence in 7 through the
simulations 6("™

= Solution : reparametrisation

€M~ N(0,1) and 0™ = (™, 1)

M
Z og g, (¢(¢"™,m))—log m((¢'™, m))—log £(Y ('™, m))

30



M
Z 0g g, ((¢'™,m)) — log (4 (6™, 7)) — log £(Y[p (6™, 7))

= People take M =1

= Dki(gy,, ™) may be explicit (for Gaussian distributions for instance)
but not used in practice

= (M are resimulated each time we compute the gradients

31



More details for the regression case

= 0 are the parameters (weights and bias)
= Prior gaussian distribution on 6 : 6 ~ N(0,T)
= If regression Y; = fy(X;) +¢;, €~ N(0,0?)

oY, (£ ) = Z”Y fotem (XD

202
i—1
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Variational versions of neural
networks

Variational (probabilistic) autoencoder



The problem

Xi = do(Zi) +e
Zi ~ id.Nmn(0,In)
& ~ iidNa(0,0°1,)

Likelihood
0(X: dy) = /£(X|Z;d9)p(2)dZ
VA

No explicit form, linked ot the fact that p(Z|X; dg) is complex
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The Evidence Lower BOund (ELBO)

= Let's simplify that distribution p(Z|X; dp)

p(Z|X;dy) ~ qx(Z;g, H)
Nobs Nobs
[[p(ZiIXido) ~ []ax(Zig H)
i=1 =1

ax,(Ziig, H) = Nn(g(Xi), H(g(X7))

where g and H are chosen such that Dk (q(Z; X, g, H), p(Z|X; dy))
is small

= Replace the likelihood by the ELBO

ELBO(de, g, H) = K(X; dg) = DKL(q(Z; X g, H)v p(Z|X; d))
Egx(z:6.1)[l08 P(X|Z; dg)] — Dk (ax(Z; &, H), p(Z))
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Optimization: minimize —ELBO(d, g, H)

—ELBO(d, g, H) = —Eqy(z;g,1)[log P(X|Z; dy)] + D«L(ax(Z; g, h), p(Z))

= Reconstruction term

Nobs
Xi — do(Z))|?
—Eqy(z:g,H)[log P(X|Z; dp)] = Eqy(z:g,H) [Z S

i=1

= Regularisation term : Dy

= o2 : variance parameter which balances regularisation and

reconstruction
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About dy, g and H

dy neural network function as before
About g and H : called the "encoder part"

= H(X) is a covariance so
= it should be a square symmetric matrix
= Simplification: diagonal matrix H(X) = diag(h*(X)) where
h(X) € R™
* h(X) = ha(h(X)) g(X) = g2(&1(X)). &1 = m

= g»,&, h; neural networks

o =h(x) =h,(h,(x))
36



About the expectation

= E $obes M can not be evaluated
ax(Z:g,h) i=1 :
= Monte Carlo approximation on 1 realization

= Reparametrisation trick

Zim = g(Xi) + diag(h(X;))Ci,  with & ~ Nin(0, L)

Z X, - d. Z)|

= |[Xi — do(Z)[17 *de DI
qx(Zgh

Nobs

Z X — de(g(Xi);Ugiag(h(Xi))QN\2

i=1

37



Finally...

N(o, )

o =h(x) x=1(2)

loss = C||x-xX]|* + KLIN(1 ,0),N(O,)] = C|[x-f(z)|]> + KL[N(g(x), h(x)), N(O, )]
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Conclusion

= Easy to understand all the tools

= Now, how easy is it to encode this?
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