Gradient descent optimization using automatic differentiation

F. Cheysson, J. Chiquet, M. Mariandassou, T. Mary-Huard

Finist'R 2022

Context

Most inference problems in statistics/AI boil down to optimization.

Exemple Logistic regression

Assume $(X_i, Y_i) \in \mathbb{R}^d \times \{0, 1\}, i = 1, ..., n$, and

$$Y_i|x_i \sim B(p_{x_i})$$
 ind, where $p_{x_i} = rac{e^{x_i^T heta}}{1 + e^{x_i^T heta}}$

Inference

Via Maximum Likelihood:

$$\begin{split} \hat{\theta} &= & \arg\min_{\theta} \ \left\{ -\sum_{i} \mathcal{L}(x_{i}, y_{i}; \theta) \right\} \\ &= & \arg\min_{\theta} \ \left\{ -\sum_{i} y_{i} x_{i}^{T} \theta - \log\left(1 + e^{x_{i}^{T} \theta}\right) \right\} \\ &= & \arg\min_{\theta} \ f(\theta) \end{split}$$

Gradient descent

Let $f:\mathbb{R}^d \to \mathbb{R}$ be a convex and differentiable function. Assume there exists

$$x^* = \arg\min_{x} \ f(x)$$

Gradient descent algorithm

Require:
$$x_0$$
, λ_t , η $Crit = 1$ while $Crit > \eta$ do $x_{t+1} = x_t - \lambda_t \nabla f(x_t)$ $Crit = ||x_{t+1} - x_t||$ end while return x_{t+1} x_0 initialization $\lambda_t > 0$ sequence of step sizes η precision

Gradient descent

Let $f:\mathbb{R}^d \to \mathbb{R}$ be a convex and differentiable function. Assume there exists

$$x^* = \arg\min_{x} \ f(x)$$

Gradient descent algorithm

Require:
$$x_0$$
, λ_t , η $Crit = 1$ while $Crit > \eta$ do $x_{t+1} = x_t - \lambda_t \nabla f(x_t)$ $Crit = ||x_{t+1} - x_t||$ end while return x_{t+1} x_0 initialization $\lambda_t > 0$ sequence of step sizes η precision

Why using gradient descent?

- ► Theoretical guarantees (see Joon lecture),
- ► First order method ⇒ scalable,
- Easy to implement,
- ► Many existing refinements (momentum, acceleration, stochastic gradient...).

Still...

Requires access to $\nabla f(x_t)$ at each step t.

- \blacktriangleright derive a close form expression for ∇f OR
- **•** compute $\nabla f(x_t)$ numerically.
- ⇒ Automatic Differentiation!

Rmk: AD provides the exact value of the gradient at a given point (i.e. no numerical approximation).

Principle of Automatic differentiation

Composite function

Assume that we aim at finding

$$x^* = \arg\min_{x} \ f(x),$$

where f is a composite function, i.e.

$$f = f_{K} \circ f_{K-1} \circ ... \circ f_{2} \circ f_{1}$$

with f_k , k = 1, ..., K a "basic" function.

Chaining rule

Let
$$y_1 = f_1(x)$$

 $y_2 = f_2(y_1)$
...
 $y_K = f_K(y_{K-1}) = f(x)$

Then

$$\frac{\partial f}{\partial x}(x) = \frac{\partial f_K}{\partial y_{K-1}}(y_{K-1}) \times \frac{\partial f_{K-1}}{\partial y_{K-2}}(y_{K-2}) \times \dots \times \frac{\partial f_1}{\partial x}(x)$$

Computational graph

Consider $f: \mathbb{R}^2 \to \mathbb{R}$ $(x_1, x_2) \mapsto \log(x_1 x_2) \sin(x_2) = z$

Behind the forward path: Autograd

- ► Every time the engine executes an operation in the graph, the derivative of that operation is added to the graph.
- ▶ These derivatives will be executed later in the backward path.
- ► This assumes that the engine knows the derivatives of the basic functions.

 \Rightarrow At the end of a forward pass, the **computational graph** the **results** (i.e. the computed outputs) and the **backward path** are ready to be used.

Computational Graph extended with the backward path

Consider $f(x_1, x_2) = \sin(x_2) \log(x_1 x_2) = z$

Backward operators of basic functions. . .

... are not regular derivatives!

Why?

To flow through the backward path, at operator node f_k one needs to output

$$\frac{\partial f_{K}}{\partial y_{k}}(y_{K-1}) = \frac{\partial f_{K}}{\partial y_{K-1}}(y_{K-1}) \times \frac{\partial f_{K-1}}{\partial y_{K-2}}(y_{K-2}) \times \dots \times \frac{\partial f_{k}}{\partial y_{k-1}}(y_{k-1})$$

rather than $\frac{\partial f_k}{\partial y_{k-1}}(y_{k-1})$ only.

Rmk A basic function is an autograd function with both a forward **and** a backward methods available.

Summary

To perform automatical differentiation, one needs,

- ▶ Well defined basic functions with forward and backward methods
- Automatic construction of the computational graph and backward path
- Efficient storage of function outputs and by-products
- ⇒ R package torch!

Easy to install, no dependence to python or reticulate.

torch objects

Compared with basic R, torch deals with tensors:

```
library(torch)
x.r <- rnorm(3)
y.r <- as.matrix(rnorm(3))
x.torch <- torch_tensor(x.r)
y.torch <- torch_tensor(y.r)</pre>
```

Very similar to R, but pay attention to details. . .

Trainable torch objects

Recall
$$\hat{\theta} = \arg\min_{\theta} \left\{ -\sum_{i} \mathcal{L}(x_i, y_i; \theta) \right\}.$$

- (x_i, y_i) are static values (i.e. data) that do not require gradient,
- m heta is a trainable value (i.e. learnable parameter) that requires gradient.

Example

```
x = torch_tensor(3,requires_grad = TRUE)
y = x %>% torch_log %>% torch_square ## y=f(x)=log(x)^2
x
torch_tensor
3
[ CPUFloatType{1} ][ requires_grad = TRUE ]
y
torch_tensor
1.2069
[ CPUFloatType{1} ][ grad_fn = <PowBackward0> ]
```

Gradient evaluation

► The gradient computation requires the computational graph, stored in the function output:

```
y$grad_fn
PowBackward0
y$grad_fn$next_functions
[[1]]
LogBackward0
```

► Gradient is computed when the backward pass is applied, and stored in the input variable:

```
y$backward()
x$grad

torch_tensor
0.7324
[ CPUFloatType{1} ]
```

```
 \begin{aligned} & \text{Recall} \quad \hat{\theta} = \text{arg min} \quad \left\{ -\sum_{i} y_{i} x_{i}^{T} \theta - \log \left(1 + e^{x_{i}^{T} \theta}\right) \right\} \\ & \text{logistic\_loss} \leftarrow \text{function(theta, x, y) } \{ \\ & \text{\# Compute x\_i*} \setminus \text{theta} \\ & \text{odds} \leftarrow \text{torch\_matmul(x, theta)} \\ & \text{log\_lik} \leftarrow \text{torch\_dot(y, odds)} - \text{torch\_sum(torch\_log(1 + torch\_exp(odds)))} \\ & \text{return(-log\_lik)} \\ \} \end{aligned}
```

Create the different torch objects

```
## Build data tensors from existing R objects X and Y
x <- torch_tensor(X)
y <- torch_tensor(Y)
## Build the trainable tensor theta
theta_current <- torch_tensor(rep(0, ncol(X)), requires_grad = TRUE)</pre>
```

and choose your favorite gradient descent method

```
## Choose among
theta_optimizer <- optim_adam(theta_current)
theta_optimizer <- optim_sgd(theta_current,lr=0.01)
theta_optimizer <- optim_rprop(theta_current)
### ...</pre>
```

```
Now loop!
## Parameters
num_iterations <- 100</pre>
loss vector <- vector("numeric", length = num iterations)</pre>
for (i in 1:num iterations) {
  ## Set the derivatives at 0
  theta_optimizer$zero_grad()
  ## Forward
  loss <- logistic_loss(theta_current, x, y)</pre>
  ## Backward
  loss$backward()
  ## Update parameter
  theta_optimizer$step()
  ## Store the current loss for graphical display
  loss vector[i] <- loss %>% as.numeric()
```

Convergence ?

Automatic Differentiation for Neural Networks?

Stay tuned on State Of The R!

Upcoming session on Variational Auto Encoders including

- Personalized datasets,
- ► Mini Batches,
- Convolutional NN,
- Dropout.

Some references

https://state of ther. github. io/finistR2022/autodiff.html

https://pytorch.org/blog/overview-of-pytorch-autograd-engine/

https://pytorch.org/blog/computational-graphs-constructed-in-pytorch/

https://pytorch.org/blog/how-computational-graphs-are-executed-in-pytorch/