
Gradient descent optimization using automatic
differentiation

F. Cheysson, J. Chiquet, M. Mariandassou, T. Mary-Huard

Finist’R 2022

Context
Most inference problems in statistics/AI boil down to optimization.

Exemple Logistic regression
Assume (Xi , Yi) ∈ Rd × {0, 1}, i = 1, ..., n, and

Yi |xi ∼ B(pxi) ind, where pxi = exT
i θ

1 + exT
i θ

Inference
Via Maximum Likelihood:

θ̂ = arg min
θ

{
−

∑
i

L(xi , yi ; θ)
}

= arg min
θ

{
−

∑
i

yixT
i θ − log

(
1 + exT

i θ
)}

= arg min
θ

f (θ)

Gradient descent

Let f : Rd → R be a convex and differentiable function.
Assume there exists

x∗ = arg min
x

f (x)

Gradient descent algorithm

Require: x0, λt , η Crit = 1
while Crit > η do

xt+1 = xt − λt∇f (xt)
Crit = ||xt+1 − xt ||

end while
return xt+1

x0 initialization λt > 0 sequence of step
sizes η precision

Gradient descent

Let f : Rd → R be a convex and differentiable function.
Assume there exists

x∗ = arg min
x

f (x)

Gradient descent algorithm

Require: x0, λt , η Crit = 1
while Crit > η do

xt+1 = xt − λt∇f (xt)
Crit = ||xt+1 − xt ||

end while
return xt+1

x0 initialization λt > 0 sequence of step
sizes η precision

Why using gradient descent ?

▶ Theoretical guarantees (see Joon lecture),
▶ First order method ⇒ scalable,
▶ Easy to implement,
▶ Many existing refinements (momentum, acceleration, stochastic

gradient. . .).

Still...
Requires access to ∇f (xt) at each step t.
▶ derive a close form expression for ∇f OR
▶ compute ∇f (xt) numerically.

⇒ Automatic Differentiation!

Rmk: AD provides the exact value of the gradient at a given point
(i.e. no numerical approximation).

Principle of Automatic differentiation
Composite function
Assume that we aim at finding

x∗ = arg min
x

f (x),

where f is a composite function, i.e.

f = fK ◦ fK−1 ◦ ... ◦ f2 ◦ f1

with fk , k = 1, ..., K a “basic” function.

Chaining rule
Let y1 = f1(x)

y2 = f2(y1)
...

yK = fK (yK−1) = f (x)

Then
∂f
∂x (x) = ∂fK

∂yK−1
(yK−1) × ∂fK−1

∂yK−2
(yK−2) × ... × ∂f1

∂x (x)

Computational graph

Consider f : R2 → R
(x1, x2) 7→ log(x1x2) sin(x2) = z

Behind the forward path: Autograd

▶ Every time the engine executes an operation in the graph, the
derivative of that operation is added to the graph.

▶ These derivatives will be executed later in the backward path.

▶ This assumes that the engine knows the derivatives of the basic
functions.

⇒ At the end of a forward pass, the computational graph the results
(i.e. the computed outputs) and the backward path are ready to be
used.

Computational Graph extended with the backward path

Consider f (x1, x2) = sin(x2) log(x1x2) = z

Backward operators of basic functions. . .

. . . are not regular derivatives !

Why ?
To flow through the backward path, at operator node fk one needs to
output

∂fK
∂yk

(yK−1) = ∂fK
∂yK−1

(yK−1) × ∂fK−1
∂yK−2

(yK−2) × ... × ∂fk
∂yk−1

(yk−1)

rather than ∂fk
∂yk−1

(yk−1) only.

Rmk A basic function is an autograd function with both a forward and a
backward methods available.

Summary

To perform automatical differentiation, one needs,
▶ Well defined basic functions with forward and backward methods

▶ Automatic construction of the computational graph and backward
path

▶ Efficient storage of function outputs and by-products

⇒ R package torch!

Easy to install, no dependence to python or reticulate.

torch objects

Compared with basic R, torch deals with tensors:
library(torch)
x.r <- rnorm(3)
y.r <- as.matrix(rnorm(3))
x.torch <- torch_tensor(x.r)
y.torch <- torch_tensor(y.r)

Very similar to R, but pay attention to details. . .
x.r + y.r

[,1]
[1,] 0.2489226
[2,] 0.7104369
[3,] 1.9373319
x.torch + y.torch

torch_tensor
0.2489 2.1009 0.3943

-1.1415 0.7104 -0.9961
1.7919 3.6439 1.9373

[CPUFloatType{3,3}]

Trainable torch objects

Recall θ̂ = arg min
θ

{
−

∑
i

L(xi , yi ; θ)
}

.

▶ (xi , yi) are static values (i.e. data) that do not require gradient,
▶ θ is a trainable value (i.e. learnable parameter) that requires

gradient.

Example
x = torch_tensor(3,requires_grad = TRUE)
y = x %>% torch_log %>% torch_square ## y=f(x)=log(x)ˆ2
x

torch_tensor
3

[CPUFloatType{1}][requires_grad = TRUE]
y

torch_tensor
1.2069

[CPUFloatType{1}][grad_fn = <PowBackward0>]

Gradient evaluation

▶ The gradient computation requires the computational graph, stored
in the function output:

y$grad_fn

PowBackward0
y$grad_fn$next_functions

[[1]]
LogBackward0

▶ Gradient is computed when the backward pass is applied, and stored
in the input variable:

y$backward()
x$grad

torch_tensor
0.7324

[CPUFloatType{1}]

Application: logistic regression

Recall θ̂ = arg min
θ

{
−

∑
i

yixT
i θ − log

(
1 + exT

i θ
)}

logistic_loss <- function(theta, x, y) {
Compute x_i*\theta
odds <- torch_matmul(x, theta)
log_lik <- torch_dot(y, odds) - torch_sum(torch_log(1 + torch_exp(odds)))
return(-log_lik)

}

Application: logistic regression

Create the different torch objects
Build data tensors from existing R objects X and Y
x <- torch_tensor(X)
y <- torch_tensor(Y)
Build the trainable tensor theta
theta_current <- torch_tensor(rep(0, ncol(X)), requires_grad = TRUE)

and choose your favorite gradient descent method
Choose among
theta_optimizer <- optim_adam(theta_current)
theta_optimizer <- optim_sgd(theta_current,lr=0.01)
theta_optimizer <- optim_rprop(theta_current)
...

Application: logistic regression

Now loop !
Parameters
num_iterations <- 100
loss_vector <- vector("numeric", length = num_iterations)

for (i in 1:num_iterations) {

Set the derivatives at 0
theta_optimizer$zero_grad()

Forward
loss <- logistic_loss(theta_current, x, y)

Backward
loss$backward()

Update parameter
theta_optimizer$step()

Store the current loss for graphical display
loss_vector[i] <- loss %>% as.numeric()

}

Application: logistic regression
Convergence ?

0 20 40 60 80 100

80
90

10
0

11
0

12
0

13
0

14
0

Nb Iterations

Lo
ss

Automatic Differentiation for Neural Networks ?

Stay tuned on State Of The R!

Upcoming session on Variational Auto Encoders including

▶ Personalized datasets,

▶ Mini Batches,

▶ Convolutional NN,

▶ Dropout.

Some references

https://stateofther.github.io/finistR2022/autodiff.html

https://pytorch.org/blog/overview-of-pytorch-autograd-engine/

https://pytorch.org/blog/computational-graphs-constructed-in-pytorch/

https://pytorch.org/blog/how-computational-graphs-are-executed-in-
pytorch/

https://stateofther.github.io/finistR2022/autodiff.html
https://pytorch.org/blog/overview-of-pytorch-autograd-engine/
https://pytorch.org/blog/computational-graphs-constructed-in-pytorch/
https://pytorch.org/blog/how-computational-graphs-are-executed-in-pytorch/
https://pytorch.org/blog/how-computational-graphs-are-executed-in-pytorch/

