Mini-bach Gradient Descent

Felix Cheysson, Tristan Mary-Huard

Batch Gradient Descent (= “classical” GD)

Consider the learning task where one aims at finding

0 = arg min Z f(xi,8),

i=1
#: unknown parameters (x1, ..., Xp): training set.

Batch GD Update 0 sequentially as follows:
fort=1,..., T do
Grad(t) = Y i1 VF(x;,0)
0t = 0t — A*+1Grad(t)
end for
return 67

Pros and cons

P> tends to converge very well to local optima
> very few hyper-parameters to tune

» computing the cost and gradient for the entire training set

can be very slow and sometimes intractable

Stochastic Gradient Descent
Principle
Rather than using the full training set at each iteration, consider
only 1 observation:
fort=1,..., T do
fori=1,...,ndo

Grad(, :Vf(x,, 0)
0t = Gt1 — X\t Grad(t, i)
end for
end for

return 67"

A pass through the dataset (i.e. an iteration t) is called an epoch.
Pros and cons

» computing Vf(x;,#) is cheap = no space / memory problem
but vectorization shorcuts are lost

» considering a single observation adds noise to the optimization
process = escape local optima but optimization is erratic

Mini batch Gradient Descent
Principle
Use a small subset of observations at each iteration.
fort=1,...,T do
Split the data into batches of size m: B, ..., B/
forj=1,....J do
Grad(t,j) = VY it f(xi,0)
0t = ti-1 — Xt Grad(t,)
end for
end for

return 67/

Pros and cons

» Providing m is small, computing Grad(t,) is cheap = no
space / memory problem and benefit from vectorization !

» Using m observations (m > 1) adds noise to the optimization
process = escape local optima and much less erratic than
SGD.

The best of the 2 worlds 7

Using m examples in a minibatch requires O(m) computations and
use O(m) memory, and reduce the amount of uncertainty in the
gradient by a factor of O(y/m).

= Increasing the mini-batch size results in diminishing marginal
rewards.

See:
http://www.deeplearningbook.org/contents/optimization.html

http://www.deeplearningbook.org/contents/optimization.html

